Regional evaluation of groundwater-surface water interactions using a coupled geohydrological model (SWAT+gwflow)

被引:4
|
作者
Yimer, Estifanos Addisu [1 ]
Bailey, Ryan T. [2 ]
Van Schaeybroeck, Bert [5 ]
van de Vyver, Hans [5 ]
Villani, Lorenzo [1 ,6 ]
Nossent, Jiri [1 ,3 ]
van Griensven, Ann [1 ,4 ]
机构
[1] Vrije Univ Brussels, Dept Hydrol & Hydraul Engn, B-1050 Brussels, Belgium
[2] Colorado State Univ, Dept Civil & Environm Engn, Ft Collins, CO 80523 USA
[3] Flanders Hydraul Res, Dept Mobil & Publ Works, Berchemlei 115, B-2140 Antwerp, Belgium
[4] IHE Delft Inst Water Educ, Dept Water Sci & Engn, NL-2700 Delft, Netherlands
[5] Royal Meteorol Inst, 3 Ave Circulaire, B-1180 Brussels, Belgium
[6] Univ Firenze, Dept Agr Food Environm & Forestry DAGRI, Florence, Italy
关键词
Gridded climate observations; Coupled ground -surface water model; SWAT+; gwflow; Regional hydrology; Scheldt basin; CLIMATE-CHANGE; GRIDDED PRECIPITATION; SPATIAL VARIABILITY; TIME-SERIES; SWAT; TEMPERATURE; RUNOFF; BASIN; DISCHARGE; WETLANDS;
D O I
10.1016/j.ejrh.2023.101532
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Study region: The research is conducted for the Scheldt river basin, where seven major watersheds located in Belgium and partly in France are included in the analysis.Study focus: A proper representation of groundwater-surface water interactions with (geo)hydrological models is possible via a coupled model. However, such models have disadvantages, such as complex code modifications and new tunings, and are computationally expensive. Therefore, their application on large spatial scales is limited. A newly developed model, SWAT+gwflow integrates the Soil Water Assessment Tool (SWAT+) with the groundwater module gwflow and has the potential to overcome these limitations. However, this coupled model has not yet been evaluated at a regional scale; hence, we present the evaluation of this model for regional studies using a global aquifer data over the seven watersheds in the Scheldt basin. Furthermore, we have investigated and quantified water balance components within the basin, with a focus on groundwater-surface water exchange. New Hydrological Insights for theRegion: From the results (Nash-Sutcliffe efficiency (NSE) of 0.8-0.9 for all catchments based on monthly average streamflow during calibration and validation periods), we consider the model to be a good simulator of hydrology in the basin. In addition, the simulated groundwater head shows good agreement with observed well data (with a mean absolute error of less than 0.42 m). Also, the rivers in five of the seven watersheds are found to be strongly dependent on groundwater discharge to the streams. We conclude that (1) the SWAT+gwflow model is capable of accurately modeling hydrological processes and state variables in the seven watersheds using global aquifer data and limited computational time, (2) the climategridded dataset can successfully be used for (geo)hydrological studies, and (3) the groundwater surface water interaction increases over the years (from 1975 to 2021) with a strong increment found in the Grote Nete (3.7 fold) and upper Scheldt (2.3 fold) watersheds. These results are, moreover, promising for data-scarce regions where geohydrological modeling relies on the use of global datasets, but the mere success of this modeling application does not guarantee the accuracy of the dataset for other locations, hence, further verification is required. Furthermore, although in this study, the gwflow module is integrated into the SWAT+ model, it could also be integrated into other surface water models for other studies.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Groundwater-surface water interaction in a river-wetland-aquifer regional system using a coupled simulation-based approach
    Rasouli, Mohammad Mehdi
    Ketabchi, Hamed
    Mahmoodzadeh, Davood
    JOURNAL OF HYDROLOGY, 2025, 656
  • [22] Groundwater-surface water interactions in wetlands for integrated water resources management - Preface
    Schot, P
    Winter, T
    JOURNAL OF HYDROLOGY, 2006, 320 (3-4) : 261 - 263
  • [23] Groundwater-Surface water interactions research: Past trends and future directions
    Irvine, Dylan J.
    Singha, Kamini
    Kurylyk, Barret L.
    Briggs, Martin A.
    Sebastian, Yakub
    Tait, Douglas R.
    Helton, Ashley M.
    JOURNAL OF HYDROLOGY, 2024, 644
  • [24] Application of an Integrated SWAT-MODFLOW Model to Evaluate Potential Impacts of Climate Change and Water Withdrawals on Groundwater-Surface Water Interactions in West-Central Alberta
    Chunn, David
    Faramarzi, Monireh
    Smerdon, Brian
    Alessi, Daniel S.
    WATER, 2019, 11 (01)
  • [25] Integrated Hydrologic Modelling of Groundwater-Surface Water Interactions in Cold Regions
    Yang, Xiaofan
    Hu, Jinhua
    Ma, Rui
    Sun, Ziyong
    FRONTIERS IN EARTH SCIENCE, 2021, 9
  • [26] Monitoring groundwater-surface water interactions in the Upper Nile Basin of Uganda
    Department of Geology, Makerere University, Kampala, Uganda
    不详
    不详
    IAHS-AISH Publ., 1600, (68-75):
  • [27] Polyfluoroalkyl substances requiring a renewed focus on groundwater-surface water interactions
    Divine, Craig
    Wadhawan, Amar
    Pulikkal, Vivek
    Khambhammettu, Prashanth
    Erickson, Jay
    GROUND WATER MONITORING AND REMEDIATION, 2023, 43 (01): : 14 - 31
  • [28] Beaver dam analogues drive heterogeneous groundwater-surface water interactions
    Wade, Jeffrey
    Lautz, Laura
    Kelleher, Christa
    Vidon, Philippe
    Davis, Julianne
    Beltran, Julio
    Pearce, Casey
    HYDROLOGICAL PROCESSES, 2020, 34 (26) : 5340 - 5353
  • [29] Groundwater-surface water interactions in headwater forested wetlands of the Canadian shield
    Devito, KJ
    Hill, AR
    Roulet, N
    JOURNAL OF HYDROLOGY, 1996, 181 (1-4) : 127 - 147
  • [30] Characterising groundwater-surface water interactions in idealised ephemeral stream systems
    Quichimbo, Edisson A.
    Singer, Michael B.
    Cuthbert, Mark O.
    HYDROLOGICAL PROCESSES, 2020, 34 (18) : 3792 - 3806