Reinforcement-Learning-Based Routing and Resource Management for Internet of Things Environments: Theoretical Perspective and Challenges

被引:5
|
作者
Musaddiq, Arslan [1 ]
Olsson, Tobias [1 ]
Ahlgren, Fredrik [1 ]
机构
[1] Linnaeus Univ, Dept Comp Sci & Media Technol, S-39182 Kalmar, Sweden
关键词
Internet of Things; machine learning; reinforcement learning; resource management; LOW-POWER; IOT; ALGORITHM; PROTOCOL; QOS;
D O I
10.3390/s23198263
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Internet of Things (IoT) devices are increasingly popular due to their wide array of application domains. In IoT networks, sensor nodes are often connected in the form of a mesh topology and deployed in large numbers. Managing these resource-constrained small devices is complex and can lead to high system costs. A number of standardized protocols have been developed to handle the operation of these devices. For example, in the network layer, these small devices cannot run traditional routing mechanisms that require large computing powers and overheads. Instead, routing protocols specifically designed for IoT devices, such as the routing protocol for low-power and lossy networks, provide a more suitable and simple routing mechanism. However, they incur high overheads as the network expands. Meanwhile, reinforcement learning (RL) has proven to be one of the most effective solutions for decision making. RL holds significant potential for its application in IoT device's communication-related decision making, with the goal of improving performance. In this paper, we explore RL's potential in IoT devices and discuss a theoretical framework in the context of network layers to stimulate further research. The open issues and challenges are analyzed and discussed in the context of RL and IoT networks for further study.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] A Deep Reinforcement Learning-Based Caching Strategy for Internet of Things
    Nasehzadeh, Ali
    Wang, Ping
    2020 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2020, : 969 - 974
  • [22] Deep learning and machine learning based anomaly detection in internet of things environments
    Gokdemir, Ali
    Calhan, Ali
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2022, 37 (04): : 1945 - 1956
  • [23] Reinforcement Learning-Based Control and Networking Co-Design for Industrial Internet of Things
    Xu, Hansong
    Liu, Xing
    Yu, Wei
    Griffith, David
    Golmie, Nada
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (05) : 885 - 898
  • [24] Cloud-Edge Collaborative Resource Allocation for Blockchain-Enabled Internet of Things: A Collective Reinforcement Learning Approach
    Li, Meng
    Pei, Pan
    Yu, F. Richard
    Si, Pengbo
    Li, Yu
    Sun, Enchang
    Zhang, Yanhua
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (22): : 23115 - 23129
  • [25] Analysis of Resource Management Methods Based on Reinforcement Learning
    Xing, Mingzhe
    Wang, Ziyun
    Xiao, Zhen
    2021 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE BIG DATA AND INTELLIGENT SYSTEMS (HPBD&IS), 2021, : 27 - 31
  • [26] Reinforcement-Learning-Based Network Slicing and Resource Allocation for Multi-Access Edge Computing Networks
    Jiang, Shurui
    Zheng, Jun
    Yan, Feng
    Zhao, Shuyuan
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2024, 10 (03) : 1132 - 1145
  • [27] Toward a Sustainable Internet of Underwater Things Based on AUVs, SWIPT, and Reinforcement Learning
    Omeke, Kenechi G.
    Mollel, Michael
    Shah, Syed T.
    Zhang, Lei
    Abbasi, Qammer H.
    Imran, Muhammad Ali
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (05): : 7640 - 7651
  • [28] Resource-aware clustering based routing protocol in the Internet of Things
    Wang, Xiaoni
    4TH INTERNATIONAL CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY (ICAST 2012), 2012, : 20 - 25
  • [29] Reinforcement Learning Based Congestion Control in Satellite Internet of Things
    Wang, Zhou
    Zhang, Jiaxin
    Zhang, Xing
    Wang, Wenbo
    2019 11TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2019,
  • [30] Reinforcement-Learning-Based Job-Shop Scheduling for Intelligent Intersection Management
    Huang, Shao-Ching
    Lin, Kai-En
    Kuo, Cheng-Yen
    Lin, Li-Heng
    Sayin, Muhammed O.
    Lin, Chung-Wei
    2023 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, DATE, 2023,