Reinforcement-Learning-Based Routing and Resource Management for Internet of Things Environments: Theoretical Perspective and Challenges

被引:5
|
作者
Musaddiq, Arslan [1 ]
Olsson, Tobias [1 ]
Ahlgren, Fredrik [1 ]
机构
[1] Linnaeus Univ, Dept Comp Sci & Media Technol, S-39182 Kalmar, Sweden
关键词
Internet of Things; machine learning; reinforcement learning; resource management; LOW-POWER; IOT; ALGORITHM; PROTOCOL; QOS;
D O I
10.3390/s23198263
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Internet of Things (IoT) devices are increasingly popular due to their wide array of application domains. In IoT networks, sensor nodes are often connected in the form of a mesh topology and deployed in large numbers. Managing these resource-constrained small devices is complex and can lead to high system costs. A number of standardized protocols have been developed to handle the operation of these devices. For example, in the network layer, these small devices cannot run traditional routing mechanisms that require large computing powers and overheads. Instead, routing protocols specifically designed for IoT devices, such as the routing protocol for low-power and lossy networks, provide a more suitable and simple routing mechanism. However, they incur high overheads as the network expands. Meanwhile, reinforcement learning (RL) has proven to be one of the most effective solutions for decision making. RL holds significant potential for its application in IoT device's communication-related decision making, with the goal of improving performance. In this paper, we explore RL's potential in IoT devices and discuss a theoretical framework in the context of network layers to stimulate further research. The open issues and challenges are analyzed and discussed in the context of RL and IoT networks for further study.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Deep Reinforcement Learning for Autonomous Internet of Things: Model, Applications and Challenges
    Lei, Lei
    Tan, Yue
    Zheng, Kan
    Liu, Shiwen
    Zhang, Kuan
    Shen, Xuemin
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2020, 22 (03): : 1722 - 1760
  • [2] Reinforcement-Learning-Based Robust Resource Management for Multi-Radio Systems
    Delaney, James
    Dowey, Steve
    Cheng, Chi-Tsun
    SENSORS, 2023, 23 (10)
  • [3] AUV-Aided Localization for Internet of Underwater Things: A Reinforcement-Learning-Based Method
    Yan, Jing
    Gong, Yadi
    Chen, Cailian
    Luo, Xiaoyuan
    Guan, Xinping
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (10): : 9728 - 9746
  • [4] Machine learning for resource management in industrial Internet of Things
    Musaddiq, Arslan
    Azam, Irfan
    Olsson, Tobias
    Ahlgren, Fredrik
    FRONTIERS IN COMPUTER SCIENCE, 2025, 7
  • [5] Priority-Aware Reinforcement-Learning-Based Integrated Design of Networking and Control for Industrial Internet of Things
    Xu, Hansong
    Liu, Xing
    Hatcher, William Grant
    Xu, Guobin
    Liao, Weixian
    Yu, Wei
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (06) : 4668 - 4680
  • [6] Resource scheduling based on routing tree and detection matrix for Internet of things
    Bai, Hongying
    Zhang, Xiaotong
    Liu, Yuxin
    Xie, Yingdong
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2021, 17 (03)
  • [7] Deep-Reinforcement-Learning-Based Energy-Efficient Resource Management for Social and Cognitive Internet of Things
    Yang, Helin
    Zhong, Wen-De
    Chen, Chen
    Alphones, Arokiaswami
    Xie, Xianzhong
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (06) : 5677 - 5689
  • [8] Deep Reinforcement Learning-Based Dynamic Resource Management for Mobile Edge Computing in Industrial Internet of Things
    Chen, Ying
    Liu, Zhiyong
    Zhang, Yongchao
    Wu, Yuan
    Chen, Xin
    Zhao, Lian
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (07) : 4925 - 4934
  • [9] A Resource Management Based on Deep Learning in Ubiquitous Power Internet of Things
    Yao, Wenhao
    Peng, Huaide
    Peng, Huiyun
    Xiong, Yanfang
    Li, Xueting
    Kong, Qiang
    IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 1168 - 1171
  • [10] Recent Reinforcement Learning and Blockchain Based Security Solutions for Internet of Things: Survey
    Gasmi, Rim
    Hammoudi, Sarra
    Lamri, Manal
    Harous, Saad
    WIRELESS PERSONAL COMMUNICATIONS, 2023, 132 (02) : 1307 - 1345