Flood susceptibility mapping using AutoML and a deep learning framework with evolutionary algorithms for hyperparameter optimization

被引:13
|
作者
Vincent, Amala Mary [1 ]
Parthasarathy, K. S. S. [2 ]
Jidesh, P. [1 ]
机构
[1] Natl Inst Technol Karnataka, Dept Math & Computat Sci, Room 2-6, Mangalore 575025, Karnataka, India
[2] Natl Inst Technol Karnataka, Dept Water Resources & Ocean Engn, Mangalore 575025, Karnataka, India
关键词
Flood susceptibility mapping; AutoML; Convolutional neural network; HPO; Bayesian optimization; Kerala; SPATIAL PREDICTION; REGION; RISK; INUNDATION; IMAGERY; MODELS; AREAS; BASIN; CITY;
D O I
10.1016/j.asoc.2023.110846
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Flooding is one of the most common natural hazards that have extremely detrimental consequences. Understanding which areas are vulnerable to flooding is crucial to addressing these effects. In this work, we use machine learning models and Automated machine learning (AutoML) systems for flood susceptibility mapping in Kerala, India. In particular, we used a three-dimensional convolutional neural network (CNN) architecture for this purpose. The CNN model was assisted with hyperparameter opti-mization techniques that combine Bayesian optimization with evolutionary algorithms like differential evolution and covariance matrix adaptation evolutionary strategies. The performances of all models are compared in terms of cross-entropy loss, accuracy, precision, recall, area under the curve (AUC) and kappa score. The CNN model shows better performance than the AutoML models. Evolutionary algorithm-assisted hyperparameter optimization methods improved the efficiency of the CNN model by 4 and 9 percent in terms of accuracy and by 0.0265 and 0.0497 with reference to the AUC score.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] A comparative spatial analysis of flood susceptibility mapping using boosting machine learning algorithms in Rathnapura, Sri Lanka
    Kurugama, Kumudu Madhawa
    Kazama, So
    Hiraga, Yusuke
    Samarasuriya, Chaminda
    JOURNAL OF FLOOD RISK MANAGEMENT, 2024, 17 (02):
  • [12] Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling?
    Binh Thai Pham
    Chinh Luu
    Tran Van Phong
    Phan Trong Trinh
    Shirzadi, Ataollah
    Renoud, Somayeh
    Asadi, Shahrokh
    Hiep Van Le
    von Meding, Jason
    Clague, John J.
    JOURNAL OF HYDROLOGY, 2021, 592
  • [13] Flood Susceptibility Mapping through the GIS-AHP Technique Using the Cloud
    Swain, Kishore Chandra
    Singha, Chiranjit
    Nayak, Laxmikanta
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (12)
  • [14] Radon potential mapping in Jangsu-gun, South Korea using probabilistic and deep learning algorithms
    Rezaie, Fatemeh
    Panahi, Mahdi
    Lee, Jongchun
    Lee, Jungsub
    Kim, Seonhong
    Yoo, Juhee
    Lee, Saro
    ENVIRONMENTAL POLLUTION, 2022, 292
  • [15] Integration of hard and soft supervised machine learning for flood susceptibility mapping
    Andaryani, Soghra
    Nourani, Vahid
    Haghighi, Ali Torabi
    Keesstra, Saskia
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 291
  • [16] Flood susceptibility mapping using machine learning boosting algorithms techniques in Idukki district of Kerala India
    Saravanan, Subbarayan
    Abijith, Devanantham
    Reddy, Nagireddy Masthan
    Parthasarathy, K. S. S.
    Janardhanam, Niraimathi
    Sathiyamurthi, Subbarayan
    Sivakumar, Vivek
    URBAN CLIMATE, 2023, 49
  • [17] Flood susceptibility mapping and assessment using a novel deep learning model combining multilayer perceptron and autoencoder neural networks
    Ahmadlou, Mohammad
    Al-Fugara, A'kif
    Al-Shabeeb, Abdel Rahman
    Arora, Aman
    Al-Adamat, Rida
    Quoc Bao Pham
    Al-Ansari, Nadhir
    Nguyen Thi Thuy Linh
    Sajedi, Hedieh
    JOURNAL OF FLOOD RISK MANAGEMENT, 2021, 14 (01):
  • [18] Flood susceptibility mapping using convolutional neural network frameworks
    Wang, Yi
    Fang, Zhice
    Hong, Haoyuan
    Peng, Ling
    JOURNAL OF HYDROLOGY, 2020, 582
  • [19] On hyperparameter optimization of machine learning algorithms: Theory and practice
    Yang, Li
    Shami, Abdallah
    NEUROCOMPUTING, 2020, 415 : 295 - 316
  • [20] Towards urban flood susceptibility mapping using data-driven models in Berlin, Germany
    Seleem, Omar
    Ayzel, Georgy
    de Souza, Arthur Costa Tomaz
    Bronstert, Axel
    Heistermann, Maik
    GEOMATICS NATURAL HAZARDS & RISK, 2022, 13 (01) : 1640 - 1662