Ni-Co alloy catalyst derived from NixCoy/MgAl2O4 via exsolution method for high coke resistance toward dry reforming of methane

被引:14
|
作者
Kim, Dong Hyun [1 ,2 ]
Seo, Jeong-Cheol [3 ]
Kim, Yong Jun [1 ]
Kim, Jeongmin [1 ]
Yoon, Sungmin [1 ,4 ]
Ra, Howon [4 ]
Kim, Min-Jae [1 ,2 ]
Lee, Kyubock [1 ,2 ]
机构
[1] Chungnam Natl Univ, Grad Sch Energy Sci & Technol, 99 Daehak Ro, Daejeon 34134, South Korea
[2] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[3] Korea Res Inst Chem Technol, Hydrogen & C1 Gas Res Ctr, 141, Gajeong Ro, Daejeo 34114, South Korea
[4] Korea Inst Energy Res KIER, 152 Gajeong Ro, Daejeon 34129, South Korea
关键词
Dry reforming of methane; Exsolution; Coke resistance; Bimetallic catalysts; Ni-Co alloy; BIMETALLIC CATALYSTS; SYNGAS PRODUCTION; SUPPORTED COBALT; MESOPOROUS NI; NANOPARTICLES; PERFORMANCE; CH4;
D O I
10.1016/j.cattod.2023.114337
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The dry reforming methane (DRM) reaction, which directly utilizes the two major greenhouse gases as reactants and produces syngas (a mixture of H-2 and CO), is a promising method to achieve carbon neutrality. In this study, we developed a series of Ni-Co alloy catalysts with varying ratios using the exsolution method and explored the optimal Ni/Co ratio for DRM. By incorporating Co as a secondary metal and precisely controlling its proportion, the catalysts exhibited improved activation balance in CH4 and CO2, excellent resistance to coking, and the efficiency of the reaction pathway. Notably, the Ni4Co1 catalyst exhibited excellent coke resistance with the lowest coking rate of 0.2 mu g(coke)center dot g(cat)(-1)h (-1), which was only 0.34% of the monometallic Ni catalyst. The origin of coke resistance of catalysts was investigated through in-situ DRIFT and found that the appropriate ratio of Co leads to the formate-intermediate dominant pathway that is more favorable for anti-coking. Furthermore, the catalysts exhibited reversible exsolution properties, as confirmed by cyclic of calcination-reduction. The findings of this study offer valuable insights into the fabrication of high-performance DRM catalysts utilizing the exsolution-driven alloying technique.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] (Ni/MgAl2O4)@SiO2core-shell catalyst with high coke-resistance for the dry reforming of methane
    Wang, Yousen
    Fang, Qiong
    Shen, Weihua
    Zhu, Zhiqing
    Fang, Yunjin
    REACTION KINETICS MECHANISMS AND CATALYSIS, 2018, 125 (01) : 127 - 139
  • [2] Ni-Co catalyst derived from layered double hydroxides for dry reforming of methane
    Zhang, Xiaoqing
    Yang, Chunhui
    Zhang, Yanping
    Xu, Yan
    Shang, Shuyong
    Yin, Yongxiang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (46) : 16115 - 16126
  • [3] (Ni/MgAl2O4)@SiO2 core–shell catalyst with high coke-resistance for the dry reforming of methane
    Yousen Wang
    Qiong Fang
    Weihua Shen
    Zhiqing Zhu
    Yunjin Fang
    Reaction Kinetics, Mechanisms and Catalysis, 2018, 125 : 127 - 139
  • [4] One-pot synthesis of NiCo/MgAl2O4 catalyst for high coke-resistance in steam methane reforming: Optimization of Ni/Co ratio
    Kim, Dong Hyun
    Youn, Jae-Rang
    Seo, Jeong-Cheol
    Kim, Seung Bo
    Kim, Min-Jae
    Lee, Kyubock
    CATALYSIS TODAY, 2023, 411
  • [5] Ni/MgAl2O4 catalyst for low-temperature oxidative dry methane reforming with CO2
    Shen, Jing
    Reule, Allen A. C.
    Semagina, Natalia
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (10) : 4616 - 4629
  • [6] Effect of Sr Incorporation and Ni Exsolution on Coke Resistance of the Ni/Sr-Al2O3 Catalyst for Dry Reforming of Methane
    Kim, Jeongmin
    Seo, Jeong-Cheol
    Jang, Won-Jun
    Lee, Kyubock
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (49) : 17415 - 17424
  • [7] NaBH4-Assisted Synthesis of B-(Ni-Co)/MgAl2O4 Nanostructures for the Catalytic Dry Reforming of Methane
    Shakir, Md
    Prasad, Manohar
    Ray, Koustuv
    Sengupta, Siddhartha
    Sinhamahapatra, Apurba
    Liu, Shaomin
    Vuthaluru, Hari Babu
    ACS APPLIED NANO MATERIALS, 2022, 5 (08) : 10951 - 10961
  • [8] Hydrogen production by CO2 reforming of CH4 in coke oven gas over Ni-Co/MgAl2O4 catalysts
    Li, Guangshi
    Cheng, Hongwei
    Zhao, Hongbin
    Lu, Xionggang
    Xu, Qian
    Wu, Cheng
    CATALYSIS TODAY, 2018, 318 : 46 - 51
  • [9] Lattice Strained Ni-Co alloy as a High-Performance Catalyst for Catalytic Dry Reforming of Methane
    Wu, Zhaoxuan
    Yang, Bing
    Miao, Shu
    Liu, Wei
    Xie, Jinglin
    Lee, Sungsik
    Pellin, Michael J.
    Xiao, Dequan
    Su, Dangsheng
    Ma, Ding
    ACS CATALYSIS, 2019, 9 (04) : 2693 - 2700
  • [10] MgAl2O4 with CaO in supported Ni and Ni-Co catalysts - impact on CO2 reforming of CH4
    Kumari, Rashmi
    Sengupta, Siddhartha
    INDIAN CHEMICAL ENGINEER, 2023, 65 (06) : 574 - 586