Ultrahigh Resolution Image/Video Matting with Spatio-Temporal Sparsity

被引:0
|
作者
Sun, Yanan [1 ]
Tang, Chi-Keung [1 ]
Tai, Yu-Wing [1 ]
机构
[1] HKUST, Hong Kong, Peoples R China
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2023年
关键词
D O I
10.1109/CVPR52729.2023.01356
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Commodity ultrahigh definition (UHD) displays are becoming more affordable which demand imaging in ultrahigh resolution (UHR). This paper proposes SparseMat, a computationally efficient approach for UHR image/video matting. Note that it is infeasible to directly process UHR images at full resolution in one shot using existing matting algorithms without running out of memory on consumer-level computational platforms, e.g., Nvidia 1080Ti with 11G memory, while patch-based approaches can introduce unsightly artifacts due to patch partitioning. Instead, our method resorts to spatial and temporal sparsity for addressing general UHR matting. When processing videos, huge computation redundancy can be reduced by exploiting spatial and temporal sparsity. In this paper, we show how to effectively detect spatio-temporal sparsity, which serves as a gate to activate input pixels for the matting model. Under the guidance of such sparsity, our method with sparse high-resolution module (SHM) can avoid patch-based inference while memory efficient for full-resolution matte refinement. Extensive experiments demonstrate that SparseMat can effectively and efficiently generate high-quality alpha matte for UHR images and videos at the original high resolution in a single pass. Project page is in https://github.com/nowsyn/SparseMat.git.
引用
收藏
页码:14112 / 14121
页数:10
相关论文
共 50 条
  • [21] Fast Spatio-Temporal Residual Network for Video Super-Resolution
    Li, Sheng
    He, Fengxiang
    Du, Bo
    Zhang, Lefei
    Xu, Yonghao
    Tao, Dacheng
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 10514 - 10523
  • [22] Video Super-Resolution via a Spatio-Temporal Alignment Network
    Wen, Weilei
    Ren, Wenqi
    Shi, Yinghuan
    Nie, Yunfeng
    Zhang, Jingang
    Cao, Xiaochun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1761 - 1773
  • [23] Video synthesis with high spatio-temporal resolution using spectral fusion
    Watanabe, Kiyotaka
    Iwai, Yoshio
    Nagahara, Hajime
    Yachida, Masahiko
    Suzuki, Toshiya
    MULTIMEDIA CONTENT REPRESENTATION, CLASSIFICATION AND SECURITY, 2006, 4105 : 683 - 690
  • [24] Hybrid Spatio-Temporal Error Concealment technique for Image/Video transmission
    Patel, Dheeraj
    Patel, Jigisha
    PROCEEDINGS ON 2014 2ND INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGY TRENDS IN ELECTRONICS, COMMUNICATION AND NETWORKING (ET2ECN), 2014,
  • [25] Learning Spatial and Spatio-Temporal Pixel Aggregations for Image and Video Denoising
    Xu, Xiangyu
    Li, Muchen
    Sun, Wenxiu
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7153 - 7165
  • [26] Video Segmentation with Spatio-Temporal Tubes
    Trichet, Remi
    Nevatia, Ramakant
    2013 10TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS 2013), 2013, : 330 - 335
  • [27] Spatio-temporal segmentation for video surveillance
    Sun, HZ
    Tan, TN
    ELECTRONICS LETTERS, 2001, 37 (01) : 20 - 21
  • [28] Spatio-temporal segmentation for video surveillance
    Sun, HZ
    Feng, T
    Tan, TN
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, PROCEEDINGS: COMPUTER VISION AND IMAGE ANALYSIS, 2000, : 843 - 846
  • [29] VideoZoom Spatio-Temporal Video Browser
    Smith, John R.
    IEEE TRANSACTIONS ON MULTIMEDIA, 1999, 1 (02) : 157 - 171
  • [30] Spatio-temporal video contrast enhancement
    Celik, Turgay
    IET IMAGE PROCESSING, 2013, 7 (06) : 543 - 555