Ultrahigh Resolution Image/Video Matting with Spatio-Temporal Sparsity

被引:0
|
作者
Sun, Yanan [1 ]
Tang, Chi-Keung [1 ]
Tai, Yu-Wing [1 ]
机构
[1] HKUST, Hong Kong, Peoples R China
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2023年
关键词
D O I
10.1109/CVPR52729.2023.01356
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Commodity ultrahigh definition (UHD) displays are becoming more affordable which demand imaging in ultrahigh resolution (UHR). This paper proposes SparseMat, a computationally efficient approach for UHR image/video matting. Note that it is infeasible to directly process UHR images at full resolution in one shot using existing matting algorithms without running out of memory on consumer-level computational platforms, e.g., Nvidia 1080Ti with 11G memory, while patch-based approaches can introduce unsightly artifacts due to patch partitioning. Instead, our method resorts to spatial and temporal sparsity for addressing general UHR matting. When processing videos, huge computation redundancy can be reduced by exploiting spatial and temporal sparsity. In this paper, we show how to effectively detect spatio-temporal sparsity, which serves as a gate to activate input pixels for the matting model. Under the guidance of such sparsity, our method with sparse high-resolution module (SHM) can avoid patch-based inference while memory efficient for full-resolution matte refinement. Extensive experiments demonstrate that SparseMat can effectively and efficiently generate high-quality alpha matte for UHR images and videos at the original high resolution in a single pass. Project page is in https://github.com/nowsyn/SparseMat.git.
引用
收藏
页码:14112 / 14121
页数:10
相关论文
共 50 条
  • [1] Deep Video Matting via Spatio-Temporal Alignment and Aggregation
    Sun, Yanan
    Wang, Guanzhi
    Gu, Qiao
    Tang, Chi-Keung
    Tai, Yu-Wing
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 6971 - 6980
  • [2] Video Compression Based on Spatio-Temporal Resolution Adaptation
    Afonso, Mariana
    Zhang, Fan
    Bull, David R.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (01) : 275 - 280
  • [3] Video Generation for High Spatio-temporal Resolution Imaging
    Imagawa, T.
    Azuma, T.
    Nobori, K.
    Motomura, H.
    2009 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS, 2009, : 151 - 152
  • [4] High spatio-temporal resolution video with compressed sensing
    Koller, Roman
    Schmid, Lukas
    Matsuda, Nathan
    Niederberger, Thomas
    Spinoulas, Leonidas
    Cossairt, Oliver
    Schuster, Guido
    Katsaggelos, Aggelos K.
    OPTICS EXPRESS, 2015, 23 (12): : 15992 - 16007
  • [5] Spatio-Temporal Video Completion in Spherical Image Sequences
    Xu, Binbin
    Pathak, Sarthak
    Fujii, Hiromitsu
    Yamashita, Atsushi
    Asama, Hajime
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (04): : 2032 - 2039
  • [6] Morphological spatio-temporal simplification for video image segmentation
    Wang, DM
    Labit, C
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 1997, 11 (02) : 161 - 170
  • [7] Stereo image quality: Effects of spatio-temporal resolution
    Stelmach, L
    Tam, WJ
    Meegan, D
    STEREOSCOPIC DISPLAYS AND VIRTUAL REALITY SYSTEMS VI, 1999, 3639 : 4 - 11
  • [8] Video Quality Assessment for Spatio-Temporal Resolution Adaptive Coding
    Zhu, Hanwei
    Chen, Baoliang
    Zhu, Lingyu
    Chen, Peilin
    Song, Linqi
    Wang, Shiqi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (07) : 6403 - 6415
  • [9] Spatio-Temporal Fusion Network for Video Super-Resolution
    Li, Huabin
    Zhang, Pingjian
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [10] Spatio-temporal Sampling for Video
    Shankar, Mohan
    Pitsiauis, Nikos P.
    Brady, David
    IMAGE RECONSTRUCTION FROM INCOMPLETE DATA V, 2008, 7076