The RNA Interference Effector Protein Argonaute 2 Functions as a Restriction Factor Against SARS-CoV-2

被引:5
|
作者
Lopez-Orozco, Joaquin [1 ]
Fayad, Nawell [1 ]
Khan, Juveriya Qamar [3 ]
Felix-Lopez, Alberto [2 ]
Elaish, Mohamed [1 ]
Rohamare, Megha [3 ]
Sharma, Maansi [3 ]
Falzarano, Darryl [4 ,5 ]
Pelletier, Jerry [6 ]
Wilson, Joyce [3 ]
Hobman, Tom C. [1 ,2 ,7 ]
Kumar, Anil [3 ]
机构
[1] Univ Alberta, Fac Med & Dent, Dept Cell Biol, Edmonton, AB, Canada
[2] Univ Alberta, Fac Med & Dent, Dept Med Microbiol & Immunol, Edmonton, AB, Canada
[3] Univ Saskatchewan, Dept Biochem Microbiol & Immunol, Saskatoon, SK, Canada
[4] Univ Saskatchewan, Vaccine & Infect Dis Org VIDO, Saskatoon, SK, Canada
[5] Univ Saskatchewan, Dept Vet Microbiol, Saskatoon, SK, Canada
[6] McGill Univ, Dept Biochem, Montreal, PQ, Canada
[7] Univ Alberta, Li Ka Shing Inst Virol, Edmonton, AB, Canada
基金
加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
innate immunity; coronaviruses; viral microRNAs; RNAi; Ago2; ANTIVIRAL IMMUNITY; STRESS GRANULES; DICER; VIRUSES; PHOSPHORYLATION; INHIBITION; EVOLUTION; RESPONSES; DEFENSE;
D O I
10.1016/j.jmb.2023.168170
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Argonaute 2 (Ago2) is a key component of the RNA interference (RNAi) pathway, a gene-regulatory sys-tem that is present in most eukaryotes. Ago2 uses microRNAs (miRNAs) and small interfering RNAs (siR-NAs) for targeting to homologous mRNAs which are then degraded or translationally suppressed. In plants and invertebrates, the RNAi pathway has well-described roles in antiviral defense, but its function in limiting viral infections in mammalian cells is less well understood. Here, we examined the role of Ago2 in replication of the betacoronavirus SARS-CoV-2, the etiologic agent of COVID-19. Microscopic analyses of infected cells revealed that a pool of Ago2 closely associates with viral replication sites and gene ab-lation studies showed that loss of Ago2 resulted in over 1,000-fold increase in peak viral titers. Replication of the alphacoronavirus 229E was also significantly increased in cells lacking Ago2. The antiviral activity of Ago2 was dependent on both its ability to bind small RNAs and its endonuclease function. Interestingly, in cells lacking Dicer, an upstream component of the RNAi pathway, viral replication was the same as in par-ental cells. This suggests that the antiviral activity of Ago2 is independent of Dicer processed miRNAs. Deep sequencing of infected cells by other groups identified several SARS-CoV-2-derived small RNAs that bind to Ago2. A mutant virus lacking the most abundant ORF7A-derived viral miRNA was found to be significantly less sensitive to Ago2-mediated restriction. This combined with our findings that endonu-clease and small RNA-binding functions of Ago2 are required for its antiviral function, suggests that Ago2-small viral RNA complexes target nascent viral RNA produced at replication sites for cleavage. Further studies are required to elucidate the processing mechanism of the viral small RNAs that are used by Ago2 to limit coronavirus replication.Crown Copyright & COPY; 2023 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] The SARS-CoV-2 RNA–protein interactome in infected human cells
    Nora Schmidt
    Caleb A. Lareau
    Hasmik Keshishian
    Sabina Ganskih
    Cornelius Schneider
    Thomas Hennig
    Randy Melanson
    Simone Werner
    Yuanjie Wei
    Matthias Zimmer
    Jens Ade
    Luisa Kirschner
    Sebastian Zielinski
    Lars Dölken
    Eric S. Lander
    Neva Caliskan
    Utz Fischer
    Jörg Vogel
    Steven A. Carr
    Jochen Bodem
    Mathias Munschauer
    Nature Microbiology, 2021, 6 : 339 - 353
  • [22] Atlas of the SARS-CoV-2 RNA protein interactions in infected cells
    Schmidt N.
    Munschauer M.
    BIOspektrum, 2021, 27 (4) : 376 - 379
  • [23] Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection
    Winkler, Emma S.
    Gilchuk, Pavlo
    Yu, Jinsheng
    Bailey, Adam L.
    Chen, Rita E.
    Chong, Zhenlu
    Zost, Seth J.
    Jang, Hyesun
    Huang, Ying
    Allen, James D.
    Case, James Brett
    Sutton, Rachel E.
    Carnahan, Robert H.
    Darling, Tamarand L.
    Boon, Adrianus C. M.
    Mack, Matthias
    Head, Richard D.
    Ross, Ted M.
    Crowe, James E., Jr.
    Diamond, Michael S.
    CELL, 2021, 184 (07) : 1804 - +
  • [24] Restriction of SARS-CoV-2 replication in the human placenta
    Takada, Kazuhide
    Shimodai-Yamada, Sayaka
    Suzuki, Mayumi
    Quang Duy Trinh
    Takano, Chika
    Kawakami, Kaori
    Asai-Sato, Mikiko
    Komatsu, Atsushi
    Okahashi, Aya
    Nagano, Nobuhiko
    Misawa, Toshiya
    Yamaguchi, Kyohei
    Suzuki, Tadaki
    Kawana, Kei
    Morioka, Ichiro
    Yamada, Hideto
    Hayakawa, Satoshi
    Hao, Hiroyuki
    Komine-Aizawa, Shihoko
    PLACENTA, 2022, 127 : 73 - 76
  • [25] Functional landscape of SARS-CoV-2 cellular restriction
    Martin-Sancho, Laura
    Lewinski, Mary K.
    Pache, Lars
    Stoneham, Charlotte A.
    Yin, Xin
    Becker, Mark E.
    Pratt, Dexter
    Churas, Christopher
    Rosenthal, Sara B.
    Liu, Sophie
    Weston, Stuart
    De Jesus, Paul D.
    O'Neill, Alan M.
    Gounder, Anshu P.
    Nguyen, Courtney
    Pu, Yuan
    Curry, Heather M.
    Oom, Aaron L.
    Miorin, Lisa
    Rodriguez-Frandsen, Ariel
    Zheng, Fan
    Wu, Chunxiang
    Xiong, Yong
    Urbanowski, Matthew
    Shaw, Megan L.
    Chang, Max W.
    Benner, Christopher
    Hope, Thomas J.
    Frieman, Matthew B.
    Garcia-Sastre, Adolfo
    Ideker, Trey
    Hultquist, Judd F.
    Guatelli, John
    Chanda, Sumit K.
    MOLECULAR CELL, 2021, 81 (12) : 2656 - +
  • [26] The mechanism of RNA capping by SARS-CoV-2
    Park, Gina J.
    Osinski, Adam
    Hernandez, Genaro
    Eitson, Jennifer L.
    Majumdar, Abir
    Tonelli, Marco
    Henzler-Wildman, Katie
    Pawlowski, Krzysztof
    Chen, Zhe
    Li, Yang
    Schoggins, John W.
    Tagliabracci, Vincent S.
    NATURE, 2022, 609 (7928) : 793 - +
  • [27] A map of the SARS-CoV-2 RNA structurome
    Andrews, Ryan J.
    Peterson, Jake M.
    Haniff, Hafeez S.
    Chen, Jonathan
    Williams, Christopher
    Grefe, Maison
    Disney, Matthew D.
    Moss, Walter N.
    NAR GENOMICS AND BIOINFORMATICS, 2021, 3 (02) : 1 - 14
  • [28] SARS-CoV-2 RNA reference materials
    Xu, Li
    Liang, Wen
    Yang, Xue
    Wen, Yanli
    Li, Lanying
    Yang, Zhenzhou
    Li, Yan
    Deng, Min
    Lu, Qing
    Ding, Min
    Ren, Shuzhen
    Sun, Jielin
    Zuo, Xiaolei
    Wang, Lihua
    Cao, Chengming
    Hu, Jun
    Liu, Gang
    Fan, Chunhai
    CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (22): : 2363 - 2370
  • [29] The mechanism of RNA capping by SARS-CoV-2
    Gina J. Park
    Adam Osinski
    Genaro Hernandez
    Jennifer L. Eitson
    Abir Majumdar
    Marco Tonelli
    Katie Henzler-Wildman
    Krzysztof Pawłowski
    Zhe Chen
    Yang Li
    John W. Schoggins
    Vincent S. Tagliabracci
    Nature, 2022, 609 : 793 - 800
  • [30] MVA vector expression of SARS-CoV-2 spike protein and protection of adult Syrian hamsters against SARS-CoV-2 challenge
    Meseda, Clement A.
    Stauft, Charles B.
    Selvaraj, Prabhuanand
    Lien, Christopher Z.
    Pedro, Cyntia
    Nunez, Ivette A.
    Woerner, Amy M.
    Wang, Tony T.
    Weir, Jerry P.
    NPJ VACCINES, 2021, 6 (01)