Optimization of ionizable lipids for aerosolizable mRNA lipid nanoparticles

被引:10
|
作者
Lewis, Mae M. [1 ]
Soto, Melissa R. [2 ]
Maier, Esther Y. [3 ]
Wulfe, Steven D. [2 ]
Bakheet, Sandy [2 ]
Obregon, Hannah [2 ]
Ghosh, Debadyuti [2 ,4 ]
机构
[1] Univ Texas Austin, Dept Biomed Engn, Austin, TX USA
[2] Univ Texas Austin, Coll Pharm, Div Mol Pharmaceut & Drug Delivery, Austin, TX USA
[3] Univ Texas Austin, Drug Dynam Inst, Austin, TX USA
[4] Univ Texas Austin, Coll Pharm, Div Mol Pharmaceut & Drug Delivery, 2409 Univ Ave, Austin, TX 78712 USA
关键词
aerosolization; ionizable lipid; lipid nanoparticle; mRNA; pulmonary delivery; CYSTIC-FIBROSIS; CHITOSAN NANOPARTICLES; INTRACELLULAR DELIVERY; DRUG-DELIVERY; IN-VIVO; SIRNA; FORMULATIONS; INHALATION; IMPACTOR; THERAPY;
D O I
10.1002/btm2.10580
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Although mRNA lipid nanoparticles (LNPs) are highly effective as vaccines, their efficacy for pulmonary delivery has not yet fully been established. A major barrier to this therapeutic goal is their instability during aerosolization for local delivery. This imparts a shear force that degrades the mRNA cargo and therefore reduces cell transfection. In addition to remaining stable upon aerosolization, mRNA LNPs must also possess the aerodynamic properties to achieve deposition in clinically relevant areas of the lungs. We addressed these challenges by formulating mRNA LNPs with SM-102, the clinically approved ionizable lipid in the Spikevax COVID-19 vaccine. Our lead candidate, B-1, had the highest mRNA expression in both a physiologically relevant air-liquid interface (ALI) human lung cell model and in healthy mice lungs upon aerosolization. Further, B-1 showed selective transfection in vivo of lung epithelial cells compared to immune cells and endothelial cells. These results show that the formulation can target therapeutically relevant cells in pulmonary diseases such as cystic fibrosis. Morphological studies of B-1 revealed differences in the surface structure compared to LNPs with lower transfection efficiency. Importantly, the formulation maintained critical aerodynamic properties in simulated human airways upon next generation impaction. Finally, structure-function analysis of SM-102 revealed that small changes in the number of carbons can improve upon mRNA delivery in ALI human lung cells. Overall, our study expands the application of SM-102 and its analogs to aerosolized pulmonary delivery and identifies a potent lead candidate for future therapeutically active mRNA therapies.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] CHARMM-GUI Membrane Builder for Lipid Nanoparticles with Ionizable Cationic Lipids and PEGylated Lipids
    Park, Soohyung
    Choi, Yeol Kyo
    Kim, Seonghoon
    Lee, Jumin
    Im, Wonpil
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (10) : 5192 - 5202
  • [22] Combinatorial Screening of Biscarbamate Ionizable Lipids Identifies a Low Reactogenicity Lipid for Lipid Nanoparticle mRNA Delivery
    De Lombaerde, Emily
    Chen, Yong
    Ye, Tingting
    Deckers, Julie
    Mencarelli, Giulia
    De Swarte, Kim
    Lauwers, Heleen
    De Coen, Ruben
    Kasmi, Sabah
    Bevers, Sanne
    Kuchmiy, Anna
    Bogaert, Bram
    Baekens, Lies
    Zhong, Zifu
    Lamoot, Alexander
    Sanders, Niek N.
    Lambrecht, Bart N.
    Baptista, Antonio P.
    De Koker, Stefaan
    De Geest, Bruno G.
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (21)
  • [23] Tetrahydropyrimidine Ionizable Lipids for Efficient mRNA Delivery
    Isaac, Ivan
    Shaikh, Altab
    Bhatia, Mayurakkhi
    Liu, Qian
    Park, Seungman
    Bhattacharya, Chandrabali
    ACS NANO, 2024, 18 (42) : 29045 - 29058
  • [24] Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening
    Guimaraes, Pedro P. G.
    Zhang, Rui
    Spektor, Roman
    Tan, Mingchee
    Chung, Amanda
    Billingsley, Margaret M.
    El-Mayta, Rakan
    Riley, Rachel S.
    Wang, Lili
    Wilson, James M.
    Mitchell, Michael J.
    JOURNAL OF CONTROLLED RELEASE, 2019, 316 : 404 - 417
  • [25] Optimization of the activity and biodegradability of ionizable lipids for mRNA delivery via directed chemical evolution
    Han, Xuexiang
    Alameh, Mohamad-Gabriel
    Xu, Ying
    Palanki, Rohan
    El-Mayta, Rakan
    Dwivedi, Garima
    Swingle, Kelsey L.
    Xu, Junchao
    Gong, Ningqiang
    Xue, Lulu
    Shi, Qiangqiang
    Yoon, Il-Chul
    Warzecha, Claude C.
    Wilson, James M.
    Weissman, Drew
    Mitchell, Michael J.
    NATURE BIOMEDICAL ENGINEERING, 2024, 8 (11): : 1412 - 1424
  • [26] Optimization of Ionizable Lipid Structure to Modulate ApoE Binding and Enable Stealth Lipid Nanoparticles
    Vinciguerra, Daniele
    Rose, Douglas
    Serizier, Sandy
    Milstead, Andrew
    Gallagher, Nolan
    Syrovatkina, Viktoriya
    Delaney, Ryan
    Li, Prudence
    Bush, Di
    Stanton, Matthew
    Toy, Randall
    MOLECULAR THERAPY, 2024, 32 (04) : 591 - 591
  • [27] Iterative Design of Ionizable Lipids for Intramuscular mRNA Delivery
    Tilstra, Grayson
    Couture-Senecal, Julien
    Lau, Yan Ming Anson
    Manning, Alanna M.
    Wong, Daniel S. M.
    Janaeska, Wanda W.
    Wuraola, Titobioluwa A.
    Pang, Janice
    Khan, Omar F.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (04) : 2294 - 2304
  • [28] Efficient delivery of VEGFA mRNA for promoting wound healing via ionizable lipid nanoparticles
    Dong, Shuo
    Wang, Ji
    Guo, Zongke
    Zhang, Yanhao
    Zha, Wenhui
    Wang, Yang
    Liu, Chao
    Xing, Hanlei
    Li, Xinsong
    BIOORGANIC & MEDICINAL CHEMISTRY, 2023, 78
  • [29] Study of functional lipid nanoparticles for mRNA delivery using new ionizable tocopherol derivatives
    Choi, Minyoung
    Jung, Onesun
    Lee, Eunjung
    Choi, Joon Sig
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2024, 45 (11) : 929 - 936
  • [30] Data-balanced transformer for accelerated ionizable lipid nanoparticles screening in mRNA delivery
    Wu, Kun
    Yang, Xiulong
    Wang, Zixu
    Li, Na
    Zhang, Jialu
    Liu, Lizhuang
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)