Amicromorphic phase-field model for brittle and quasi-brittle fracture

被引:3
|
作者
Bharali, Ritukesh [1 ]
Larsson, Fredrik [1 ]
Jaenicke, Ralf [2 ]
机构
[1] Chalmers Univ Technol, Dept Ind & Mat Sci, Gothenburg, Sweden
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Appl Mech, Braunschweig, Germany
基金
瑞典研究理事会;
关键词
Phase-field fracture; Brittle; Quasi-brittle; Micromorphic; Monolithic; Fracture irreversibility; FINITE-ELEMENT-METHOD; COHESIVE ZONE MODEL; MICROMORPHIC APPROACH; CRYSTAL PLASTICITY; FORMULATION; PROPAGATION; PRINCIPLES;
D O I
10.1007/s00466-023-02380-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this manuscript, a robust and variationally consistent technique is proposed for local treatment of the phase-field fracture irreversibility. This technique involves an extension of the phase-field fracture energy functional through a micromorphic approach. Consequently, the phase-field is transformed into a local variable, while a micromorphic variable regularizes the problem. The local nature of the phase-field variable enables an easier implementation of its irreversibility using a pointwise 'max' with system level precision. Unlike the popular history variable approach, which also enforces local fracture irreversibility, the micromorphic approach yields a variationally consistent framework. The efficacy of the micromorphic approach in phase-field fracture modelling is demonstrated in this work with numerical experiments on benchmark brittle and quasi-brittle fracture problems in linear elastic media. Furthermore, the extensibility of the micromorphic phase-field fracture model toward smultiphysics problems is demonstrated. To that end, a theoretical extension is carried out for modelling hydraulic fracture, and relevant numerical experiments exhibiting crack merging are presented. The source code as well as the data set accompanying this work would be made available on GitHub (https://github.com/ritukeshbharali/ falcon).
引用
收藏
页码:579 / 598
页数:20
相关论文
共 50 条
  • [41] Statistical kinetics of quasi-brittle fracture
    Malkin, AI
    Kulikov-Kostyushko, FA
    Shumikhin, TA
    DOKLADY PHYSICAL CHEMISTRY, 2006, 406 (2) : 33 - 37
  • [42] Statistical kinetics of quasi-brittle fracture
    Malkin, A. I.
    Kulikov-Kostyushko, F. A.
    Shumikhin, T. A.
    TECHNICAL PHYSICS, 2008, 53 (03) : 334 - 342
  • [43] A Comparative Review of XFEM, Mixed FEM and Phase-Field Models for Quasi-brittle Cracking
    M. Cervera
    G. B. Barbat
    M. Chiumenti
    J.-Y. Wu
    Archives of Computational Methods in Engineering, 2022, 29 : 1009 - 1083
  • [44] A rate-dependent phase-field framework for the dynamic failure of quasi-brittle materials
    Hai, Lu
    Li, Jie
    ENGINEERING FRACTURE MECHANICS, 2021, 252
  • [45] A Comparative Review of XFEM, Mixed FEM and Phase-Field Models for Quasi-brittle Cracking
    Cervera, M.
    Barbat, G. B.
    Chiumenti, M.
    Wu, J. -Y.
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2022, 29 (02) : 1009 - 1083
  • [46] A phase-field description of dynamic brittle fracture
    Borden, Michael J.
    Verhoosel, Clemens V.
    Scott, Michael A.
    Hughes, Thomas J. R.
    Landis, Chad M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 217 : 77 - 95
  • [47] Phase-field models for brittle and cohesive fracture
    Vignollet, Julien
    May, Stefan
    de Borst, Rene
    Verhoosel, Clemens V.
    MECCANICA, 2014, 49 (11) : 2587 - 2601
  • [48] A STUDY ON PHASE-FIELD MODELS FOR BRITTLE FRACTURE
    Zhang, Fei
    Huang, Weizhang
    LI, Xianping
    Zhang, Shicheng
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (06) : 793 - 821
  • [49] Phase-field models for brittle and cohesive fracture
    Julien Vignollet
    Stefan May
    René de Borst
    Clemens V. Verhoosel
    Meccanica, 2014, 49 : 2587 - 2601
  • [50] A phase-field model of quasi-brittle fracture for pressurized cracks: Application to UO2 high-burnup microstructure fragmentation
    Jiang, Wen
    Hu, Tianchen
    Aagesen, Larry K.
    Biswas, Sudipta
    Gamble, Kyle A.
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2022, 119