Data-driven predictive maintenance framework for railway systems

被引:1
作者
Meira, Jorge [1 ]
Veloso, Bruno [2 ]
Bolon-Canedo, Veronica [3 ]
Marreiros, Goreti [1 ]
Alonso-Betanzos, Amparo [3 ]
Gama, Joao [2 ]
机构
[1] Polytech Inst Porto ISEP IPP, GECAD, Porto, Portugal
[2] INESC TEC, LIAAD, Porto, Portugal
[3] Univ A Coruna, LIDIA CITIC, Coruna, Spain
关键词
Anomaly detection; data streams; unsupervised learning; one class classification; predictive maintenance; BIG DATA; ANOMALY DETECTION; FAULT-DETECTION;
D O I
10.3233/IDA-226811
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The emergence of the Industry 4.0 trend brings automation and data exchange to industrial manufacturing. Using computational systems and IoT devices allows businesses to collect and deal with vast volumes of sensorial and business process data. The growing and proliferation of big data and machine learning technologies enable strategic decisions based on the analyzed data. This study suggests a data-driven predictive maintenance framework for the air production unit (APU) system of a train of Metro do Porto. The proposed method assists in detecting failures and errors in machinery before they reach critical stages. We present an anomaly detection model following an unsupervised approach, combining the Half-Space-trees method with One Class K Nearest Neighbor, adapted to deal with data streams. We evaluate and compare our approach with the Half-Space-Trees method applied without the One Class K Nearest Neighbor combination. Our model produced few type-I errors, significantly increasing the value of precision when compared to the Half-Space-Trees model. Our proposal achieved high anomaly detection performance, predicting most of the catastrophic failures of the APU train system.
引用
收藏
页码:1087 / 1102
页数:16
相关论文
共 40 条
  • [1] Angiulli F., 2007, Proceedings of the sixteenth ACM conference on Conference on information and knowledge management, P811, DOI [10.1145/1321440.1321552, DOI 10.1145/1321440.1321552]
  • [2] Structuring Data for Intelligent Predictive Maintenance in Asset Management
    Aremu, Oluseun Omotola
    Palau, Adria Salvador
    Parlikad, Ajith Kumar
    Hyland-Wood, David
    McAree, Peter Ross
    [J]. IFAC PAPERSONLINE, 2018, 51 (11): : 514 - 519
  • [3] Barros M., 2020, IOT STREAMS DATA DRI, P61
  • [4] Predictive maintenance using tree-based classification techniques: A case of railway switches
    Bukhsh, Zaharah Allah
    Saeed, Aaqib
    Stipanovic, Irina
    Doree, Andre G.
    [J]. TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2019, 101 : 35 - 54
  • [5] Chandola V., 2009, CONFORMAL PREDICTION, V41, P71, DOI [10.1016/B978-0-12-398537-8.00004-3, DOI 10.1016/B978-0-12-398537-8.00004-3]
  • [6] Predicting Air Compressor Failures Using Long Short Term Memory Networks
    Chen, Kunru
    Pashami, Sepideh
    Fan, Yuantao
    Nowaczyk, Slawomir
    [J]. PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2019, PT I, 2019, 11804 : 596 - 609
  • [7] Predictive maintenance based on anomaly detection using deep learning for air production unit in the railway industry
    Davari, Narjes
    Veloso, Bruno
    Ribeiro, Rita P.
    Pereira, Pedro Mota
    Gama, Joao
    [J]. 2021 IEEE 8TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2021,
  • [8] A Survey on Data-Driven Predictive Maintenance for the Railway Industry
    Davari, Narjes
    Veloso, Bruno
    Costa, Gustavo de Assis
    Pereira, Pedro Mota
    Ribeiro, Rita P.
    Gama, Joao
    [J]. SENSORS, 2021, 21 (17)
  • [9] Anomaly detection and predictive maintenance for photovoltaic systems
    De Benedetti, Massimiliano
    Leonardi, Fabio
    Messina, Fabrizio
    Santoro, Corrado
    Vasilakos, Athanasios
    [J]. NEUROCOMPUTING, 2018, 310 : 59 - 68
  • [10] Ding Z., 2013, IFAC P, V46, P12, DOI [DOI 10.3182/20130902-3-CN-3020.00044, 10.3182/20130902-3-cn-3020.00044]