Sign-changing solutions for Kirchhoff-type equations with indefinite nonlinearities

被引:2
作者
Cui, Zhiying [1 ]
Shuai, Wei [2 ,3 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[3] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 04期
基金
中国国家自然科学基金;
关键词
Kirchhoff-type equations; Sign-changing solutions; Nonlocal term; Indefinite nonlinearity; GROUND-STATE SOLUTIONS; NODAL SOLUTIONS; POSITIVE SOLUTIONS; EXISTENCE; ENERGY; SOLVABILITY; BEHAVIOR;
D O I
10.1007/s00033-023-02031-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested in the existence of sign-changing solutions for the following Kirchhoff-type equation {- (a + b integral(Omega) vertical bar del u|(2)dx) Delta u = (h(+)(x) +lambda h(-) (x)) vertical bar u vertical bar(p-2)u, x is an element of Omega, u = 0, x is an element of partial derivative Omega, where a, b > 0, Omega subset of R-3 is a bounded domain with smooth boundary, the potential h : (Omega) over bar -> R is a sign-changing continuous function, and lambda > 0 is a parameter. If p is an element of (4, 6), we prove the existence of least energy sign-changing solution u(b,lambda), the asymptotic behavior of u(b,lambda) as b -> 0(+) or -> +infinity are also analyzed. Moreover, if the set {x is an element of Omega : h(x) > 0} possesses several disjoint components, we also prove the existence of multi-bump sign-changing solutions.
引用
收藏
页数:26
相关论文
共 32 条
[1]  
[Anonymous], 2001, Comm. Appl. Nonlinear Anal
[2]  
[Anonymous], 2001, Adv. Differ. Equ
[3]   On the well-posedness of the Kirchhoff string [J].
Arosio, A ;
Panizzi, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :305-330
[4]   Partial symmetry of least energy nodal solutions to some variational problems [J].
Bartsch, T ;
Weth, T ;
Willew, M .
JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1) :1-18
[5]   Multiple positive solutions of superlinear elliptic problems with sign-changing weight [J].
Bonheure, D ;
Gomes, JM ;
Habets, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 214 (01) :36-64
[6]   A sign-changing solution for a superlinear Dirichlet problem [J].
Castro, A ;
Cossio, J ;
Neuberger, JM .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (04) :1041-1053
[7]   The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions [J].
Chen, Ching-yu ;
Kuo, Yueh-cheng ;
Wu, Tsung-fang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (04) :1876-1908
[8]   GLOBAL SOLVABILITY FOR THE DEGENERATE KIRCHHOFF EQUATION WITH REAL ANALYTIC DATA [J].
DANCONA, P ;
SPAGNOLO, S .
INVENTIONES MATHEMATICAE, 1992, 108 (02) :247-262
[9]   SIGN-CHANGING MULTI-BUMP SOLUTIONS FOR KIRCHHOFF-TYPE EQUATIONS R3 [J].
Deng, Yinbin ;
Shuai, Wei .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (06) :3139-3168
[10]   Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in R3 [J].
Deng, Yinbin ;
Peng, Shuangjie ;
Shuai, Wei .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (11) :3500-3527