Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topology optimization methods

被引:85
|
作者
Ji, Wenye [1 ]
Chang, Jin [2 ]
Xu, He-Xiu [3 ]
Gao, Jian Rong [1 ,4 ]
Groblacher, Simon [2 ]
Urbach, H. Paul [1 ]
Adam, Aurele J. L. [1 ]
机构
[1] Delft Univ Technol, Dept Imaging Phys, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[2] Delft Univ Technol, Dept Quantum Nanosci, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[3] Northwestern Polytech Univ, Shaanxi Key Lab Flexible Elect KLoFE, 127 West Youyi Rd, Xian 710072, Peoples R China
[4] SRON Netherlands Inst Space Res, Niels Bohrweg 4, NL-2333 CA Leiden, Netherlands
关键词
HIGH-EFFICIENCY; INVERSE DESIGN; PHASE; LIGHT; POLARIZATION; ANTENNA; MICROCAVITIES; FRAMEWORK; ANGLE; SPIN;
D O I
10.1038/s41377-023-01218-y
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
As a two-dimensional planar material with low depth profile, a metasurface can generate non-classical phase distributions for the transmitted and reflected electromagnetic waves at its interface. Thus, it offers more flexibility to control the wave front. A traditional metasurface design process mainly adopts the forward prediction algorithm, such as Finite Difference Time Domain, combined with manual parameter optimization. However, such methods are time-consuming, and it is difficult to keep the practical meta-atom spectrum being consistent with the ideal one. In addition, since the periodic boundary condition is used in the meta-atom design process, while the aperiodic condition is used in the array simulation, the coupling between neighboring meta-atoms leads to inevitable inaccuracy. In this review, representative intelligent methods for metasurface design are introduced and discussed, including machine learning, physics-information neural network, and topology optimization method. We elaborate on the principle of each approach, analyze their advantages and limitations, and discuss their potential applications. We also summarize recent advances in enabled metasurfaces for quantum optics applications. In short, this paper highlights a promising direction for intelligent metasurface designs and applications for future quantum optics research and serves as an up-to-date reference for researchers in the metasurface and metamaterial fields.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    ACTA NUMERICA, 2024, 33 : 633 - 713
  • [2] Quantum Physics-Informed Neural Networks
    Trahan, Corey
    Loveland, Mark
    Dent, Samuel
    ENTROPY, 2024, 26 (08)
  • [3] Machine Learning in Structural Engineering: Physics-Informed Neural Networks for Beam Problems
    dos Santos, Felipe Pereira
    Gori, Lapo
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2025,
  • [4] Physics-informed neural networks for inverse problems in nano-optics and metamaterials
    Chen, Yuyao
    Lu, Lu
    Karniadakis, George Em
    Dal Negro, Luca
    OPTICS EXPRESS, 2020, 28 (08) : 11618 - 11633
  • [5] iPINNs: incremental learning for Physics-informed neural networks
    Dekhovich, Aleksandr
    Sluiter, Marcel H. F.
    Tax, David M. J.
    Bessa, Miguel A.
    ENGINEERING WITH COMPUTERS, 2025, 41 (01) : 389 - 402
  • [6] Design of Turing Systems with Physics-Informed Neural Networks
    Kho, Jordon
    Koh, Winston
    Wong, Jian Cheng
    Chiu, Pao-Hsiung
    Ooi, Chin Chun
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1180 - 1186
  • [7] Physics-informed neural networks for an optimal counterdiabatic quantum computation
    Ferrer-Sanchez, Antonio
    Flores-Garrigos, Carlos
    Hernani-Morales, Carlos
    Orquin-Marques, Jose J.
    Hegade, Narendra N.
    Cadavid, Alejandro Gomez
    Montalban, Iraitz
    Solano, Enrique
    Vives-Gilabert, Yolanda
    Martin-Guerrero, Jose D.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (02):
  • [8] Learning Specialized Activation Functions for Physics-Informed Neural Networks
    Wang, Honghui
    Lu, Lu
    Song, Shiji
    Huang, Gao
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2023, 34 (04) : 869 - 906
  • [9] Physics-Informed Machine Learning for Inverse Design of Optical Metamaterials
    Sarkar, Sulagna
    Ji, Anqi
    Jermain, Zachary
    Lipton, Robert
    Brongersma, Mark
    Dayal, Kaushik
    Noh, Hae Young
    ADVANCED PHOTONICS RESEARCH, 2023, 4 (12):
  • [10] Physics-informed machine learning with optimization-based guarantees: Applications to AC power flow
    Jalving, Jordan
    Eydenberg, Michael
    Blakely, Logan
    Castillo, Anya
    Kilwein, Zachary
    Skolfield, J. Kyle
    Boukouvala, Fani
    Laird, Carl
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 157