A priori error estimates of two monolithic schemes for Biot's consolidation model

被引:2
作者
Gu, Huipeng [1 ,2 ]
Cai, Mingchao [3 ,7 ]
Li, Jingzhi [4 ,5 ,6 ]
Ju, Guoliang [2 ]
机构
[1] Southern Univ Sci & Technol, Dept Math, Shenzhen, Peoples R China
[2] Natl Supercomp Ctr Shenzhen, Dept High Performance Comp, Shenzhen, Peoples R China
[3] Morgan State Univ, Dept Math, Baltimore, MD USA
[4] Southern Univ Sci & Technol, Dept Math, Shenzhen, Peoples R China
[5] Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen, Shenzhen, Peoples R China
[6] Southern Univ Sci & Technol, SUSTech Int Ctr Math, Shenzhen, Peoples R China
[7] Morgan State Univ, Dept Math, Baltimore, MD 21251 USA
基金
美国国家科学基金会;
关键词
a priori error estimates; Biot's model; finite element; FINITE-ELEMENT-METHOD; FIXED-STRESS; STABILITY; LOCKING;
D O I
10.1002/num.23059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concentrates on a priori error estimates of two monolithic schemes for Biot's consolidation model based on the three-field formulation introduced by Oyarzua et al. (SIAM J Numer Anal, 2016). The spatial discretizations are based on the Taylor-Hood finite elements combined with Lagrange elements for the three primary variables. We employ two different schemes to discretize the time domain. One uses the backward Euler method, and the other applies the combination of the backward Euler and Crank-Nicolson methods. A priori error estimates show that both schemes are unconditionally convergent with optimal error orders. Detailed numerical experiments are presented to validate the theoretical analysis.
引用
收藏
页数:22
相关论文
共 25 条
[1]   THEORY OF ELASTICITY AND CONSOLIDATION FOR A POROUS ANISOTROPIC SOLID [J].
BIOT, MA .
JOURNAL OF APPLIED PHYSICS, 1955, 26 (02) :182-185
[2]   General theory of three-dimensional consolidation [J].
Biot, MA .
JOURNAL OF APPLIED PHYSICS, 1941, 12 (02) :155-164
[3]   A partially parallel-in-time fixed-stress splitting method for Biot's consolidation model [J].
Borregales, Manuel ;
Kumar, Kundan ;
Radu, Florin Adrian ;
Rodrigo, Carmen ;
Jose Gaspar, Francisco .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (06) :1466-1478
[4]   Robust fixed stress splitting for Biot's equations in heterogeneous media [J].
Both, Jakub Wiktor ;
Borregales, Manuel ;
Nordbotten, Jan Martin ;
Kumar, Kundan ;
Radu, Florin Adrian .
APPLIED MATHEMATICS LETTERS, 2017, 68 :101-108
[5]  
Brenner S.C., 2008, The Mathematical Theory of Finite Element Methods, V3rd ed., P1, DOI [10.1007/978-0-387-75934-0, DOI 10.1007/978-0-387-75934-0]
[6]   A NONCONFORMING MIXED MULTIGRID METHOD FOR THE PURE DISPLACEMENT PROBLEM IN PLANAR LINEAR ELASTICITY [J].
BRENNER, SC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (01) :116-135
[7]   Virtual element methods for the three-field formulation of time-dependent linear poroelasticity [J].
Burger, Raimund ;
Kumar, Sarvesh ;
Mora, David ;
Ruiz-Baier, Ricardo ;
Verma, Nitesh .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (01)
[8]  
CAI M., 2017, Int. J. Evolution Equations, V10, P267
[9]   A splitting-based finite element method for the Biot poroelasticity system [J].
Chaabane, Nabil ;
Riviere, Beatrice .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (07) :2328-2337
[10]   Analysis of a multiphysics finite element method for a poroelasticity model [J].
Feng, Xiaobing ;
Ge, Zhihao ;
Li, Yukun .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (01) :330-359