Relativistic space-charge field calculation by interpolation-based treecode

被引:1
|
作者
Kan, Yi-Kai [1 ,2 ]
Kaertner, Franz X. [1 ,2 ]
Le Borne, Sabine [3 ]
Zemke, Jens-Peter M. [3 ]
机构
[1] Deutsch Elektronen Synchrotron DESY, Ctr Free Electron Laser Sci CFEL, Hamburg, Germany
[2] Univ Hamburg, Dept Phys, Hamburg, Germany
[3] Hamburg Univ Technol, Inst Math, Hamburg, Germany
基金
欧洲研究理事会;
关键词
Treecode; Space-charge field calculation; Separable approximation; Admissibility condition; Special relativity; FAST MULTIPOLE ALGORITHM; SIMULATION; CODE;
D O I
10.1016/j.cpc.2023.108668
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Space-charge effects are of great importance in particle accelerator physics. In the computational modeling, tree-based methods are increasingly used because of their effectiveness in handling nonuniform particle distributions and/or complex geometries. However, they are often formulated using an electrostatic force which is only a good approximation for low energy particle beams. For high energy, i.e., relativistic particle beams, the relativistic interaction kernel may need to be considered and the conventional treecode fails in this scenario. In this work, we formulate a treecode based on Lagrangian interpolation for computing the relativistic space-charge field. Two approaches are introduced to control the interpolation error. In the first approach, a modified admissibility condition is proposed for which the treecode can be used directly in the lab-frame. The second approach is based on the transformation of the particle beam to the rest-frame where the conventional admissibility condition can be used. Numerical simulation results using both methods will be compared and discussed.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A GPU-parallelized interpolation-based fast multipole method for the relativistic space-charge field calculation
    Kan, Yi-Kai
    Kaertner, Franz X.
    Le Borne, Sabine
    Zemke, Jens -Peter M.
    COMPUTER PHYSICS COMMUNICATIONS, 2023, 291
  • [2] The calculation model of space-charge field based on the Galerkin series
    Huang Chuan-Lu
    Ding Yao-Gen
    Wang Yong
    Xie Xing-Juan
    Gao Dong-Ping
    ACTA PHYSICA SINICA, 2012, 61 (14)
  • [3] RELATIVISTIC SPACE-CHARGE FLOW IN A MAGNETIC-FIELD
    BERGERON, KD
    POUKEY, JW
    APPLIED PHYSICS LETTERS, 1975, 27 (02) : 58 - 60
  • [4] RELATIVISTIC SPACE-CHARGE FLOW PATTERNS
    BIRTLES, AB
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1972, 33 (04) : 437 - &
  • [5] SPACE-CHARGE LIMIT IN A RELATIVISTIC MIGMA
    BLEWETT, JP
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1988, 271 (01): : 212 - 213
  • [6] THE ACCURACY OF SPACE-CHARGE FIELD CALCULATION IN MICROWAVE BEAM DEVICES
    MANKIN, IA
    USHEROVICH, BL
    RADIOTEKHNIKA I ELEKTRONIKA, 1986, 31 (09): : 1867 - 1870
  • [7] EXACT CALCULATION OF SPACE-CHARGE FIELD BY MATRIX INVERSION AND DIAKOPTICS
    KHALED, M
    IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1975, 94 (06): : 1922 - 1922
  • [8] Space-charge and thermal effects in relativistic crossed-field devices
    Marini, Samuel
    Rizzato, Felipe B.
    Pakter, Renato
    PHYSICS OF PLASMAS, 2018, 25 (06)
  • [9] EFFECT OF AVALANCHE SPACE-CHARGE FIELD ON THE CALCULATION OF CORONA ONSET VOLTAGE
    PAREKH, H
    SRIVASTAVA, KD
    IEEE TRANSACTIONS ON ELECTRICAL INSULATION, 1979, 14 (04): : 181 - 192
  • [10] Experimental Observation of Space-Charge Field Screening of a Relativistic Particle Bunch in Plasma
    Verra, L.
    Galletti, M.
    Pompili, R.
    Biagioni, A.
    Carillo, M.
    Cianchi, A.
    Crincoli, L.
    Curcio, A.
    Demurtas, F.
    Di Pirro, G.
    Lollo, V.
    Parise, G.
    Pellegrini, D.
    Romeo, S.
    Silvi, G. J.
    Villa, F.
    Ferrario, M.
    PHYSICAL REVIEW LETTERS, 2024, 133 (03)