Hydrothermal reduction of CO2 captured as NaHCO3 into formate with metal reductants and catalysts

被引:8
|
作者
Quintana-Gomez, Laura [1 ]
Martinez-Alvarez, Pablo [1 ]
Segovia, Jose J. [2 ]
Martin, Angel [1 ]
Dolores Bermejo, M. [1 ]
机构
[1] Univ Valladolid, Dept Chem Engn & Environm Technol, PressTech Grp, BioEcoUva Res Inst Bioecon, Doctor Mergelina S-N, Valladolid 47011, Spain
[2] Univ Valladolid, BioEcoUva Res Inst Bioecon, Dept Energy & Fluid Mech Engn, Lab Thermodynam & Calibrat TERMOCAL, Paseo Belen S-N, Valladolid 47011, Spain
关键词
Hydrothermal CO 2 reduction; Sodium formate; Metal reductant; Pd; C catalyst; Kinetic model; CARBON-DIOXIDE CAPTURE; FORMIC-ACID; HYDROGEN-PRODUCTION; HIGHLY EFFICIENT; WATER; CONVERSION; FE; HYDROCARBONS; METHANOL; COPPER;
D O I
10.1016/j.jcou.2022.102369
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The hydrothermal reduction of CO2 captured in aqueous solutions using metal reductants is a promising novel approach that achieves high yields of conversion and high selectivity, but it presents the limitation of the high temperatures needed for the reaction to take place. In this work, experiments combining several reductant metals (Zn, Al and Fe), catalysts (Pd/C, Ni, Cu, Fe2O3 and Fe3O4) and temperatures (200, 250 and 300 oC) were per-formed to optimize the process at milder temperatures. Using Al as reductant and Pd/C as catalyst, yields as high as 38 % were obtained at 200oC, compared with the highest yield (57 %) observed at 250 oC. Thus a significant temperature reduction can be achieved using a suitable combination of reductant and catalyst. Using this re-action system, Pd/C as catalyst and Al as reductant, an extensive set of experiments at different times and temperatures were performed in order to determine the kinetics of the process and correlate them to a mathe-matical model of the process. The model correctly reproduces the experimental data with average errors lower than 5.9 %. These results demonstrate the feasibility of lower the operating temperature while maintaining the performance, when using an adequate combination of catalyst and reductant.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Metal-metal oxide hybrid catalysts for electrocatalytic CO2 reduction reaction
    Chen, Zuohuan
    Ye, Yifan
    Jiang, Kun
    CHEMICAL PHYSICS REVIEWS, 2024, 5 (04):
  • [32] Photocatalytic reduction of CO2 in methanol to methyl formate over CuO-TiO2 composite catalysts
    Qin, Shiyue
    Xin, Feng
    Liu, Yuande
    Yin, Xiaohong
    Ma, Wei
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2011, 356 (01) : 257 - 261
  • [33] Spontaneously Formed CuSx Catalysts for Selective and Stable Electrochemical Reduction of Industrial CO2 Gas to Formate
    Lim, Jin Wook
    Dong, Wan Jae
    Park, Jae Yong
    Hong, Dae Myung
    Lee, Jong-Lam
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (20) : 22891 - 22900
  • [34] Electrochemical reduction of CO2 to formate in aqueous solution using electro-deposited Sn catalysts
    Zhao, Chenchen
    Wang, Jianlong
    CHEMICAL ENGINEERING JOURNAL, 2016, 293 : 161 - 170
  • [35] Theory-guided development of homogeneous catalysts for the reduction of CO2 to formate, formaldehyde, and methanol derivatives
    Cramer, Hanna H.
    Das, Shubhajit
    Wodrich, Matthew D.
    Corminboeuf, Clemence
    Werle, Christophe
    Leitner, Walter
    CHEMICAL SCIENCE, 2023, 14 (11) : 2799 - 2807
  • [36] Activating Copper for Electrocatalytic CO2 Reduction to Formate via Molecular Interactions
    Tao, Zixu
    Wu, Zishan
    Wu, Yueshen
    Wang, Hailiang
    ACS CATALYSIS, 2020, 10 (16) : 9271 - 9275
  • [37] Bismuth Oxychloride Dispersed on Nitrogen-Doped Carbon as Catalyst for the Electrochemical Reduction of CO2 to Formate
    Subramanian, Siddhartha
    Chukwuike, V., I
    Kulandainathan, M. Anbu
    Barik, Rakesh C.
    CHEMELECTROCHEM, 2020, 7 (10) : 2265 - 2273
  • [38] Electrochemical CO2 reduction to formate at indium electrodes with high efficiency and selectivity in pH neutral electrolytes
    Hegner, Richard
    Rosa, Luis F. M.
    Harnisch, Falk
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 238 : 546 - 556
  • [39] Trends of Electrochemical CO2 Reduction Reaction on Transition Metal Oxide Catalysts
    Tayyebi, Ebrahim
    Hussain, Javed
    Abghoui, Younes
    Skulason, Egill
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (18) : 10078 - 10087
  • [40] Catholyte-Free Electrocatalytic CO2 Reduction to Formate
    Lee, Wonhee
    Kim, Young Eun
    Youn, Min Hye
    Jeong, Soon Kwan
    Park, Ki Tae
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (23) : 6883 - 6887