Score-Driven Modeling of Spatio-Temporal Data

被引:6
|
作者
Gasperoni, Francesca [1 ]
Luati, Alessandra [2 ]
Paci, Lucia [3 ]
D'Innocenzo, Enzo [2 ]
机构
[1] Univ Cambridge, MRC Biostat Unit, Cambridge, England
[2] Univ Bologna, Dept Stat Sci, Bologna, Italy
[3] Univ Cattolica Sacro Cuore, Dept Stat Sci, Milan, Italy
基金
英国医学研究理事会;
关键词
fMRI; Multivariate Student-t distribution; Robust filtering; SAR models; Spontaneous activations; SPATIAL AUTOREGRESSIVE MODELS; MAXIMUM-LIKELIHOOD-ESTIMATION; FMRI; INFERENCE; CONNECTIVITY; CORTEX; MRI;
D O I
10.1080/01621459.2021.1970571
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A simultaneous autoregressive score-driven model with autoregressive disturbances is developed for spatio-temporal data that may exhibit heavy tails. The model specification rests on a signal plus noise decomposition of a spatially filtered process, where the signal can be approximated by a nonlinear function of the past variables and a set of explanatory variables, while the noise follows a multivariate Student-t distribution. The key feature of the model is that the dynamics of the space-time varying signal are driven by the score of the conditional likelihood function. When the distribution is heavy-tailed, the score provides a robust update of the space-time varying location. Consistency and asymptotic normality of maximum likelihood estimators are derived along with the stochastic properties of the model. The motivating application of the proposed model comes from brain scans recorded through functional magnetic resonance imaging when subjects are at rest and not expected to react to any controlled stimulus. We identify spontaneous activations in brain regions as extreme values of a possibly heavy-tailed distribution, by accounting for spatial and temporal dependence.
引用
收藏
页码:1066 / 1077
页数:12
相关论文
共 50 条
  • [1] Data Driven Spatio-Temporal Modeling of Parking Demand
    Fiez, Tanner
    Ratliff, Lillian J.
    Dowling, Chase
    Zhang, Baosen
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 2757 - 2762
  • [2] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [3] Scalable data-driven modeling of spatio-temporal systems: Weather forecasting
    Moshki, Mohsen
    Kabiri, Peyman
    Mohebalhojeh, Alireza
    INTELLIGENT DATA ANALYSIS, 2017, 21 (03) : 577 - 595
  • [4] Spatio-temporal modeling of residential sales data
    Gelfand, AE
    Ghosh, SK
    Knight, JR
    Sirmans, CF
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1998, 16 (03) : 312 - 321
  • [5] Review of Spatio-temporal Data Modeling Methods
    Li X.
    Liu Y.
    Data Analysis and Knowledge Discovery, 2019, 3 (03) : 1 - 13
  • [6] Modeling conflict dynamics with spatio-temporal data
    Zammit-Mangion, Andrew
    Dewar, Michael
    Kadirkamanathan, Visakan
    Flesken, Anaïd
    Sanguinetti, Guido
    SpringerBriefs in Applied Sciences and Technology, 2013, (9783319010373):
  • [7] Bayesian modeling of spatio-temporal data with R
    Shanmugam, Ramalingam
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (07) : 1224 - 1224
  • [8] Spatio-temporal modeling of perimetric test data
    Ibanez, M. V.
    Simo, A.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2007, 16 (06) : 497 - 522
  • [9] Introduction to spatio-temporal data driven urban computing
    Shuo Shang
    Kai Zheng
    Panos Kalnis
    Distributed and Parallel Databases, 2020, 38 : 561 - 562
  • [10] Data-driven spatio-temporal modelling of glioblastoma
    Jorgensen, Andreas Christ Solvsten
    Hill, Ciaran Scott
    Sturrock, Marc
    Tang, Wenhao
    Karamched, Saketh R.
    Gorup, Dunja
    Lythgoe, Mark F.
    Parrinello, Simona
    Marguerat, Samuel
    Shahrezaei, Vahid
    ROYAL SOCIETY OPEN SCIENCE, 2023, 10 (03):