Norm and Numerical Radius Inequalities for Sums of Power Series of Operators in Hilbert Spaces

被引:1
作者
Altwaijry, Najla [1 ]
Dragomir, Silvestru Sever [2 ]
Feki, Kais [3 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[2] Victoria Univ, Appl Math Res Grp, ISILC, POB 14428, Melbourne 8001, Australia
[3] Univ Sfax, Fac Sci Sfax, Lab Phys Math & Applicat LR 13 ES 22, Sfax 3018, Tunisia
关键词
norm inequalities; numerical radius inequalities; power series; operators; Hilbert spaces;
D O I
10.3390/axioms13030174
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main focus of this paper is on establishing inequalities for the norm and numerical radius of various operators applied to a power series with the complex coefficients h(lambda)= n-ary sumation k=0 infinity ak lambda k and its modified version ha(lambda)= n-ary sumation k=0 infinity|ak|lambda k. The convergence of h(lambda) is assumed on the open disk D(0,R), where R is the radius of convergence. Additionally, we explore some operator inequalities related to these concepts. The findings contribute to our understanding of operator behavior in bounded operator spaces and offer insights into norm and numerical radius inequalities.
引用
收藏
页数:18
相关论文
共 30 条
[1]   A numerical radius inequality involving the generalized Aluthge transform [J].
Abu Omar, Amer ;
Kittaneh, Fuad .
STUDIA MATHEMATICA, 2013, 216 (01) :69-75
[2]   Fundamental Properties of Muckenhoupt and Gehring Weights on Time Scales [J].
Agarwal, Ravi P. ;
Darwish, Mohamed Abdalla ;
Elshamy, Hamdi Ali ;
Saker, Samir H. .
AXIOMS, 2024, 13 (02)
[3]   Gamma-Nabla Hardy-Hilbert-Type Inequalities on Time Scales [J].
Almarri, Barakah ;
El-Deeb, Ahmed A. .
AXIOMS, 2023, 12 (05)
[4]   Improvement of Furuta's Inequality with Applications to Numerical Radius [J].
Alomari, Mohammad W. ;
Bakherad, Mojtaba ;
Hajmohamadi, Monire ;
Chesneau, Christophe ;
Leiva, Victor ;
Martin-Barreiro, Carlos .
MATHEMATICS, 2023, 11 (01)
[5]   On the Dragomir Extension of Furuta's Inequality and Numerical Radius Inequalities [J].
Alomari, Mohammad W. ;
Bercu, Gabriel ;
Chesneau, Christophe .
SYMMETRY-BASEL, 2022, 14 (07)
[6]   Some Generalized Euclidean Operator Radius Inequalities [J].
Alomari, Mohammad W. ;
Shebrawi, Khalid ;
Chesneau, Christophe .
AXIOMS, 2022, 11 (06)
[7]   Some New Fractional Integral Inequalities Pertaining to Generalized Fractional Integral Operator [J].
Alsalami, Omar Mutab ;
Sahoo, Soubhagya Kumar ;
Tariq, Muhammad ;
Shaikh, Asif Ali ;
Cesarano, Clemente ;
Nonlaopon, Kamsing .
SYMMETRY-BASEL, 2022, 14 (08)
[8]   Numerical Radius Inequalities for Finite Sums of Operators [J].
Audeh, Wasim ;
Al-Labadi, Manal .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2023, 17 (08)
[9]  
Bhunia P., 2022, LECT NUMERICAL RADIU