DOWNSCALING OF SOIL MOISTURE PRODUCT OF SMAP

被引:0
|
作者
Imanpour, F. [1 ]
Dehghani, M. [1 ]
Yazdi, M. [2 ]
机构
[1] Shiraz Univ, Sch Eng, Dept Civil & Environm Engn, Shiraz, Iran
[2] Shiraz Univ, Sch Eng, Dept Elect & Comp Engn, Shiraz, Iran
关键词
Downscaling; Neural Network; Regression; SMAP; Soil Moisture; OPTICAL TRAPEZOID MODEL;
D O I
10.5194/isprs-archives-XLVIII-4-W2-2022-53-2023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Soil moisture as a variable parameter of the Earth's surface plays a very important role in many applications such as meteorology, climatology, water resources management and hydrology. Therefore, access to soil surface moisture product with high spatial resolution is very important. Due to the lack of access to soil moisture information with high spatial resolution, the main goal in this article is to downscale the existing soil moisture products and improve their spatial resolution into 1 square kilometer. For this purpose, two methods based on regression and neural network have been used for downscaling the 3 km soil moisture products of SMAP satellite. To this end, other available satellite data and products including various combinations of land surface temperature (LST), normalized difference vegetation index (NDVI), brightness temperature in different polarizations of (TBH and TBV) passive microwave sensor data, digital elevation model (DEM) and short-wavelength infrared (SWIR) data of MODIS and Sentinel 3 have been used. In this study, two regions in the north and south of Iran, Golestan and Fars provinces, have been examined, due to the lack of ground measurements of soil moisture, the SMAP product with the resolution of 1 km which has been already downscaled by exploiting the Sentinel-1 radar data, was used to evaluate the results. The evaluation results in Golestan and Fars provinces showed the correlation coefficient of 0.82 to 0.93 and 0.72 to 0.77, respectively, and the average percentage of absolute error in both regression and neural network methods was less than 21 to 30 and 42 to 46 percent.
引用
收藏
页码:53 / 58
页数:6
相关论文
共 50 条
  • [21] A SOIL MOISTURE SPATIAL DOWNSCALING METHOD FOR SMAP USING THE OPTICAL TRAPEZOID MODEL
    Zhong, Yanmei
    Wei, Zushuai
    Colliander, Andreas
    Walker, Jeffrey P.
    2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2024), 2024, : 5084 - 5086
  • [22] Low-Rank Gap Filling and Downscaling for SMAP Soil Moisture Datasets
    Beale, Kevin
    Bras, Rafael L.
    Romberg, Justin
    ECOHYDROLOGY, 2025, 18 (03)
  • [23] SMAP SOIL MOISTURE PRODUCT VALIDITY IN HETEROGENEOUS IRRIGATED REGIONS
    Worrall, George
    Judge, Jasmeet
    Barrett, Charles
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4719 - 4722
  • [24] Development and assessment of the SMAP enhanced passive soil moisture product
    Chan, S. K.
    Bindlish, R.
    O'Neill, P.
    Jackson, T.
    Njoku, E.
    Dunbar, S.
    Chaubell, J.
    Piepmeier, J.
    Yueh, S.
    Entekhabi, D.
    Colliander, A.
    Chen, F.
    Cosh, M. H.
    Caldwell, T.
    Walker, J.
    Berg, A.
    McNairn, H.
    Thibeault, M.
    Martinez-Fernandez, J.
    Uldall, F.
    Seyfried, M.
    Bosch, D.
    Starks, P.
    Collins, C. Holifield
    Prueger, J.
    van der Velde, R.
    Asanuma, J.
    Palecki, M.
    Small, E. E.
    Zreda, M.
    Calvet, J.
    Crow, W. T.
    Kerr, Y.
    REMOTE SENSING OF ENVIRONMENT, 2018, 204 : 931 - 941
  • [25] A deep neural network based SMAP soil moisture product
    Gao, Lun
    Gao, Qiang
    Zhang, Hankui
    Li, Xiaojun
    Chaubell, Mario Julian
    Ebtehaj, Ardeshir
    Shen, Lian
    Wigneron, Jean-Pierre
    REMOTE SENSING OF ENVIRONMENT, 2022, 277
  • [26] DEVELOPMENT AND VALIDATION OF THE SMAP ENHANCED PASSIVE SOIL MOISTURE PRODUCT
    Chan, S.
    Bindlish, R.
    O'Neill, P.
    Jackson, T.
    Chaubell, J.
    Piepmeier, J.
    Dunbar, S.
    Colliander, A.
    Chen, F.
    Entekhabi, D.
    Yueh, S.
    Cosh, M.
    Caldwell, T.
    Texas, U.
    Walker, J.
    Monash, U.
    Wu, X.
    Monash, U.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2539 - 2542
  • [27] EVALUATION OF THE VALIDATED SOIL MOISTURE PRODUCT FROM THE SMAP RADIOMETER
    O'Neill, P.
    Chan, S.
    Colliander, A.
    Dunbar, S.
    Njoku, E.
    Bindlish, R.
    Chen, F.
    Jackson, T.
    Burgin, M.
    Piepmeier, J.
    Yueh, S.
    Entekhabi, D.
    Cosh, M.
    Caldwell, T.
    Walker, J.
    Wu, X.
    Berg, A.
    Rowlandson, T.
    Pacheco, A.
    McNairn, H.
    Thibeault, M.
    Martinez-Fernandez, J.
    Gonzalez-Zamora, A.
    Seyfried, M.
    Bosch, D.
    Starks, P.
    Goodrich, D.
    Prueger, J.
    Palecki, M.
    Small, E.
    Zreda, M.
    Calvet, J-C.
    Crow, W.
    Kerr, Y.
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 125 - 128
  • [28] Downscaling SMAP Radiometer Soil Moisture Over the CONUS Using an Ensemble Learning Method
    Abbaszadeh, Peyman
    Moradkhani, Hamid
    Zhan, Xiwu
    WATER RESOURCES RESEARCH, 2019, 55 (01) : 324 - 344
  • [29] A deep learning approach for SMAP soil moisture downscaling informed by thermal inertia theory
    Xu, Mengyuan
    Yang, Haoxuan
    Hu, Annan
    Heng, Lee
    Li, Linyi
    Yao, Ning
    Liu, Gang
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2025, 136
  • [30] A spatial downscaling method for SMAP soil moisture considering vegetation memory and spatiotemporal fusion
    Cui, Changlu
    Meng, Yizhuo
    Xiang, Daxiang
    Hong, Zhiming
    Hu, Fengmin
    Yang, Beibei
    Tao, Chongxin
    Wei, Zushuai
    Zhang, Wen
    Li, Linyi
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2024, 17 (01)