On the pitchfork bifurcation for the Chafee-Infante equation with additive noise

被引:3
|
作者
Blumenthal, Alex [1 ]
Engel, Maximilian [2 ]
Neamtu, Alexandra [3 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Free Univ Berlin, Dept Math, Arnimallee 6, D-14195 Berlin, Germany
[3] Univ Konstanz, Dept Math & Stat, Univ Str 10, D-78464 Constance, Germany
基金
美国国家科学基金会;
关键词
Stochastic partial differential equations; Singleton attractors; Lyapunov exponents; Stochastic bifurcations; RANDOM DYNAMICAL-SYSTEMS; INVARIANT-MEASURES; ATTRACTORS; STABILITY;
D O I
10.1007/s00440-023-01235-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate pitchfork bifurcations for a stochastic reaction diffusion equation perturbed by an infinite-dimensional Wiener process. It is well-known that the random attractor is a singleton, independently of the value of the bifurcation parameter; this phenomenon is often referred to as the "destruction" of the bifurcation by the noise. Analogous to the results of Callaway et al. (AIHP Prob Stat 53:1548-1574, 2017) for a 1D stochastic ODE, we show that some remnant of the bifurcation persists for this SPDE model in the form of a positive finite-time Lyapunov exponent. Additionally, we prove finite-time expansion of volumewith increasing dimension as the bifurcation parameter crosses further eigenvalues of the Laplacian.
引用
收藏
页码:603 / 627
页数:25
相关论文
共 50 条
  • [21] Dynamical property of interaction solutions to the Chafee-Infante equation via NMSE method
    Hossain, Mohammad Mobarak
    Akter, Sushika
    Roshid, Md. Mamunur
    Harun-Or-Roshid
    Sheikh, Md. Abu Naim
    HELIYON, 2024, 10 (16)
  • [22] About the Structure of Attractors for a Nonlocal Chafee-Infante Problem
    Caballero, Ruben
    Carvalho, Alexandre N.
    Marin-Rubio, Pedro
    Valero, Jose
    MATHEMATICS, 2021, 9 (04) : 1 - 36
  • [23] Global attractor for a Chafee-Infante problem with source term
    Sriskandarajah, K.
    Smiley, M.W.
    Nonlinear Analysis, Theory, Methods and Applications, 1996, 27 (11): : 1315 - 1327
  • [24] The global attractor for a Chafee-Infante problem with source term
    Sriskandarajah, K
    Smiley, MW
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (11) : 1315 - 1327
  • [25] Additive noise destroys a pitchfork bifurcation
    Crauel H.
    Flandoli F.
    Journal of Dynamics and Differential Equations, 1998, 10 (2) : 259 - 274
  • [26] Structure of the attractor for a non-local Chafee-Infante problem
    Moreira, Estefani M.
    Valero, Jose
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (02)
  • [27] Chafee-Infante反应扩散方程的精确解
    王明亮
    周宇斌
    兰州大学学报, 1996, (03) : 30 - 34
  • [28] Stabilization by multiplicative Itô noise for Chafee–Infante equation in perforated domains
    Ly, Hong Hai
    Tang, Bao Quoc
    Applied Mathematics Letters, 2024, 150
  • [29] A Delay Nonlocal Quasilinear Chafee-Infante Problem: An Approach via Semigroup Theory
    Caraballo, Tomas
    Carvalho, A. N.
    Julio, Yessica
    APPLIED MATHEMATICS AND OPTIMIZATION, 2025, 91 (02):