On the pitchfork bifurcation for the Chafee-Infante equation with additive noise

被引:3
|
作者
Blumenthal, Alex [1 ]
Engel, Maximilian [2 ]
Neamtu, Alexandra [3 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Free Univ Berlin, Dept Math, Arnimallee 6, D-14195 Berlin, Germany
[3] Univ Konstanz, Dept Math & Stat, Univ Str 10, D-78464 Constance, Germany
基金
美国国家科学基金会;
关键词
Stochastic partial differential equations; Singleton attractors; Lyapunov exponents; Stochastic bifurcations; RANDOM DYNAMICAL-SYSTEMS; INVARIANT-MEASURES; ATTRACTORS; STABILITY;
D O I
10.1007/s00440-023-01235-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate pitchfork bifurcations for a stochastic reaction diffusion equation perturbed by an infinite-dimensional Wiener process. It is well-known that the random attractor is a singleton, independently of the value of the bifurcation parameter; this phenomenon is often referred to as the "destruction" of the bifurcation by the noise. Analogous to the results of Callaway et al. (AIHP Prob Stat 53:1548-1574, 2017) for a 1D stochastic ODE, we show that some remnant of the bifurcation persists for this SPDE model in the form of a positive finite-time Lyapunov exponent. Additionally, we prove finite-time expansion of volumewith increasing dimension as the bifurcation parameter crosses further eigenvalues of the Laplacian.
引用
收藏
页码:603 / 627
页数:25
相关论文
共 50 条
  • [1] On the pitchfork bifurcation for the Chafee–Infante equation with additive noise
    Alex Blumenthal
    Maximilian Engel
    Alexandra Neamţu
    Probability Theory and Related Fields, 2023, 187 : 603 - 627
  • [2] The Stochastic Chafee-Infante Equation
    Debussche, Arnaud
    Hoegele, Michael
    Imkeller, Peter
    DYNAMICS OF NONLINEAR REACTION-DIFFUSION EQUATIONS WITH SMALL LEVY NOISE, 2013, 2085 : 45 - 68
  • [3] The effect of noise on the Chafee-Infante equation: A nonlinear case study
    Caraballo, Tomas
    Crauel, Hans
    Langa, Jose A.
    Robinson, James C.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (02) : 373 - 382
  • [4] Stabilization by multiplicative Itô noise for Chafee-Infante equation in perforated domains
    Ly, Hong Hai
    Tang, Bao Quoc
    APPLIED MATHEMATICS LETTERS, 2024, 150
  • [5] Lipschitz perturbations of the Chafee-Infante equation
    Pires, Leonardo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 519 (01)
  • [6] The Fine Dynamics of the Chafee-Infante Equation
    Debussche, Arnaud
    Hoegele, Michael
    Imkeller, Peter
    DYNAMICS OF NONLINEAR REACTION-DIFFUSION EQUATIONS WITH SMALL LEVY NOISE, 2013, 2085 : 11 - 43
  • [7] ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR THE CHAFEE-INFANTE EQUATION
    黄浩川
    黄锐
    ActaMathematicaScientia, 2020, 40 (02) : 425 - 441
  • [8] Asymptotic Behavior of Solutions for the Chafee-Infante Equation
    Huang, Haochuan
    Huang, Rui
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (02) : 425 - 441
  • [9] Asymptotic Behavior of Solutions for the Chafee-Infante Equation
    Haochuan Huang
    Rui Huang
    Acta Mathematica Scientia, 2020, 40 : 425 - 441
  • [10] STABILISATION BY NOISE ON THE BOUNDARY FOR A CHAFEE-INFANTE EQUATION WITH DYNAMICAL BOUNDARY CONDITIONS
    Fellner, Klemens
    Sonner, Stefanie
    Bao Quoc Tang
    Do Duc Thuan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (08): : 4055 - 4078