Are trait-associated genes clustered together in a gene network?

被引:1
作者
Koo, Hyun Jung [1 ,2 ]
Pan, Wei [2 ,3 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN USA
[2] Univ Minnesota, Sch Publ Hlth, Div Biostat, Minneapolis, MN USA
[3] Univ Minnesota, Sch Publ Hlth, Div Biostat & Hlth Data Sci, 2221 Univ Ave SE,Suite 200, Minneapolis, MN 55455 USA
基金
美国国家卫生研究院;
关键词
network diffusion; random walk with restart (RWR); rare variants; UK Biobank; whole exome sequencing (WES); ASSISTED ANALYSIS; PROPAGATION; MODEL;
D O I
10.1002/gepi.22557
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genome-wide association studies (GWAS) have provided an abundance of information about the genetic variants and their loci that are associated to complex traits and diseases. However, due to linkage disequilibrium (LD) and noncoding regions of loci, it remains a challenge to pinpoint the causal genes. Gene network-based approaches, paired with network diffusion methods, have been proposed to prioritize causal genes and to boost statistical power in GWAS based on the assumption that trait-associated genes are clustered in a gene network. Due to the difficulty in mapping trait-associated variants to genes in GWAS, this assumption has never been directly or rigorously tested empirically. On the other hand, whole exome sequencing (WES) data focuses on the protein-coding regions, directly identifying trait-associated genes. In this study, we tested the assumption by leveraging the recently available exome-based association statistics from the UK Biobank WES data along with two types of networks. We found that almost all trait-associated genes were significantly more proximal to each other than randomly selected genes within both networks. These results support the assumption that trait-associated genes are clustered in gene networks, which can be further leveraged to boost the power of GWAS such as by introducing less stringent p value thresholds.
引用
收藏
页码:203 / 213
页数:11
相关论文
共 48 条
[1]   Exome sequencing and analysis of 454,787 UK Biobank participants [J].
Backman, Joshua D. ;
Li, Alexander H. ;
Marcketta, Anthony ;
Sun, Dylan ;
Mbatchou, Joelle ;
Kessler, Michael D. ;
Benner, Christian ;
Liu, Daren ;
Locke, Adam E. ;
Balasubramanian, Suganthi ;
Yadav, Ashish ;
Banerjee, Nilanjana ;
Gillies, Christopher E. ;
Damask, Amy ;
Liu, Simon ;
Bai, Xiaodong ;
Hawes, Alicia ;
Maxwell, Evan ;
Gurski, Lauren ;
Watanabe, Kyoko ;
Kosmicki, Jack A. ;
Rajagopal, Veera ;
Mighty, Jason ;
Jones, Marcus ;
Mitnaul, Lyndon ;
Stahl, Eli ;
Coppola, Giovanni ;
Jorgenson, Eric ;
Habegger, Lukas ;
Salerno, William J. ;
Shuldiner, Alan R. ;
Lotta, Luca A. ;
Overton, John D. ;
Cantor, Michael N. ;
Reid, Jeffrey G. ;
Yancopoulos, George ;
Kang, Hyun M. ;
Marchini, Jonathan ;
Baras, Aris ;
Abecasis, Goncalo R. ;
Ferreira, Manuel A. R. .
NATURE, 2021, 599 (7886) :628-+
[2]   Network expansion of genetic associations defines a pleiotropy map of human cell biology [J].
Barrio-Hernandez, Inigo ;
Schwartzentruber, Jeremy ;
Shrivastava, Anjali ;
del-Toro, Noemi ;
Gonzalez, Asier ;
Zhang, Qian ;
Mountjoy, Edward ;
Suveges, Daniel ;
Ochoa, David ;
Ghoussaini, Maya ;
Bradley, Glyn ;
Hermjakob, Henning ;
Orchard, Sandra ;
Dunham, Ian ;
Anderson, Carl A. ;
Porras, Pablo ;
Beltrao, Pedro .
NATURE GENETICS, 2023, 55 (03) :389-+
[3]   From GWAS to Function: Using Functional Genomics to Identify the Mechanisms Underlying Complex Diseases [J].
Cano-Gamez, Eddie ;
Trynka, Gosia .
FRONTIERS IN GENETICS, 2020, 11
[4]   Amelioration of IFN-γ and TNF-α-Induced Intestinal Epithelial Barrier Dysfunction by Berberine via Suppression of MLCK-MLC Phosphorylation Signaling Pathway [J].
Cao, Min ;
Wang, Pei ;
Sun, Chunhong ;
He, Wen ;
Wang, Fengjun .
PLOS ONE, 2013, 8 (05)
[5]   Gene selection by incorporating genetic networks into case-control association studies [J].
Cao, Xuewei ;
Liang, Xiaoyu ;
Zhang, Shuanglin ;
Sha, Qiuying .
EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 (03) :270-277
[6]   Incorporating Biological Pathways via a Markov Random Field Model in Genome-Wide Association Studies [J].
Chen, Min ;
Cho, Judy ;
Zhao, Hongyu .
PLOS GENETICS, 2011, 7 (04)
[7]   Boosting GWAS using biological networks: A study on susceptibility to familial breast cancer [J].
Climente-Gonzalez, Hector ;
Lonjou, Christine ;
Lesueur, Fabienne ;
Stoppa-Lyonnet, Dominique ;
Andrieu, Nadine ;
Azencott, Chloe-Agathe .
PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (03)
[8]   Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits [J].
Corradin, Olivia ;
Saiakhova, Alina ;
Akhtar-Zaidi, Batool ;
Myeroff, Lois ;
Willis, Joseph ;
Iari, Richard Cowper-Sal ;
Lupien, Mathieu ;
Markowitz, Sanford ;
Scacheri, Peter C. .
GENOME RESEARCH, 2014, 24 (01) :1-13
[9]   Network propagation: a universal amplifier of genetic associations [J].
Cowen, Lenore ;
Ideker, Trey ;
Raphael, Benjamin J. ;
Sharan, Roded .
NATURE REVIEWS GENETICS, 2017, 18 (09) :551-562
[10]   Genetic network inference: from co-expression clustering to reverse engineering [J].
D'haeseleer, P ;
Liang, SD ;
Somogyi, R .
BIOINFORMATICS, 2000, 16 (08) :707-726