Computer vision-based approach for skeleton-based action recognition, SAHC

被引:1
|
作者
Shujah Islam, M. [1 ]
机构
[1] King Faisal Univ, Coll Comp Sci & Informat Technol, Al Hufuf 31982, Al Ahsa, Saudi Arabia
关键词
Computer vision; Machine learning; Skeleton-based action recognition; Human action recognition; Artificial intelligence;
D O I
10.1007/s11760-023-02829-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Given their small size and low weight, skeleton sequences are a great option for joint-based action detection. Recent skeleton-based action recognition techniques use feature extraction from 3D joint coordinates as per spatial-temporal signals, fusing these exemplifications in a motion context to improve identification accuracy. High accuracy has been achieved with the use of first- and second-order characteristics, such as spatial, angular, and hough representations. In contrast to the and hough transform, which are useful for encoding summarized independent joint coordinates motion, the spatial, and angular features all higher-order representations are discussed in this article for encoding the static and velocity domains of 3D joints. When used to represent relative motion between body parts in the human body, the encoding is effective and remains constant across a wide range of individual body sizes. However, many models still become confused when presented with activities that have a similar trajectory. Suggest addressing these problems by integrating spatial, angular, and hough encoding as relevant order elements into contemporary systems to more accurately reflect the interdependencies between components. By combining these widely-used spatial-temporal characteristics into a single framework SAHC, acquired state-of-the-art performance on four different benchmark datasets with fewer parameters and less batch processing.
引用
收藏
页码:1343 / 1354
页数:12
相关论文
共 50 条
  • [1] Computer vision-based approach for skeleton-based action recognition, SAHC
    M. Shujah Islam
    Signal, Image and Video Processing, 2024, 18 : 1343 - 1354
  • [2] Revisiting Skeleton-based Action Recognition
    Duan, Haodong
    Zhao, Yue
    Chen, Kai
    Lin, Dahua
    Dai, Bo
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 2959 - 2968
  • [3] A Cross View Learning Approach for Skeleton-Based Action Recognition
    Zheng, Hui
    Zhang, Xinming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (05) : 3061 - 3072
  • [4] SkelResNet: Transfer Learning Approach for Skeleton-Based Action Recognition
    Kilic, Ugur
    Karadag, Ozge Oztimur
    Ozyer, Gulsah Tumuklu
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [5] An Efficient Skeleton-based Action Recognition Approach with View Transformation
    Ma, Tianyu
    Yu, Jiahui
    Gao, Hongwei
    Ju, Zhaojie
    2021 27TH INTERNATIONAL CONFERENCE ON MECHATRONICS AND MACHINE VISION IN PRACTICE (M2VIP), 2021,
  • [6] RELATIONAL NETWORK FOR SKELETON-BASED ACTION RECOGNITION
    Zheng, Wu
    Li, Lin
    Zhang, Zhaoxiang
    Huang, Yan
    Wang, Liang
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 826 - 831
  • [7] SkelVIT: consensus of vision transformers for a lightweight skeleton-based action recognition system
    Karadag, Ozge Oztimur
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (8-9) : 5619 - 5629
  • [8] SpatioTemporal focus for skeleton-based action recognition
    Wu, Liyu
    Zhang, Can
    Zou, Yuexian
    PATTERN RECOGNITION, 2023, 136
  • [9] A Review on Computer Vision-Based Methods for Human Action Recognition
    Al-Faris, Mahmoud
    Chiverton, John
    Ndzi, David
    Ahmed, Ahmed Isam
    JOURNAL OF IMAGING, 2020, 6 (06)
  • [10] Generative Action Description Prompts for Skeleton-based Action Recognition
    Xiang, Wangmeng
    Li, Chao
    Zhou, Yuxuan
    Wang, Biao
    Zhang, Lei
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 10242 - 10251