Terahertz magnetic susceptibility of pyramid-shaped L10-FePt nanodot arrays

被引:0
作者
Zhao, Zhikun [1 ]
Dai, Guohong [1 ,2 ]
Wan, Shuhan [1 ]
Yan, Weichao [2 ]
Shen, Yun [1 ,2 ]
Deng, Xiaohua [2 ]
Xing, Xiangjun [3 ,4 ]
机构
[1] Nanchang Univ, Sch Phys & Mat Sci, Nanchang 330031, Peoples R China
[2] Nanchang Univ, Inst Space Sci & Technol, Nanchang 330031, Peoples R China
[3] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Guangdong, Peoples R China
[4] Guangdong Univ Technol, Guangdong Prov Key Lab Informat Photon Technol, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
FEPT NANOPARTICLES; FABRICATION; DYNAMICS;
D O I
10.1063/5.0169178
中图分类号
O59 [应用物理学];
学科分类号
摘要
Understanding the magnetic states and their dynamics in patterned ferromagnetic materials is of great importance for ultrahigh-density recording from the viewpoints of both fundamental research and practical applications. However, reliable access to magnetization dynamics in magnetic materials and devices on the technologically highly relevant terahertz range remains challenging. Currently, there is a lack of reports on terahertz magnetic susceptibility. Here, through micromagnetic simulations, we study the dynamics of pyramid-shaped, isolated magnetic nanodots and their arrays made of L1(0)-FePt with high magnetocrystalline anisotropy. Numerical results reveal a significant magnetic response of isolated pyramid nanodots in the terahertz range. Specifically, two resonant modes, namely, a bulk mode and an edge mode, have been identified. For the lateral size above similar to 100 nm, the nanodot's bulk mode splits and higher-order modes appear. Furthermore, the calculated spatial Fourier amplitude of resonant modes of nanopyramid arrays exhibits the dependence of lateral size and inter-dot spacing. These findings are expected to open up a promising route to terahertz spintronics utilizing magnetic nanostructures.
引用
收藏
页数:8
相关论文
共 41 条
[21]   Observation of mode splitting in artificial spin ice: A comparative ferromagnetic resonance and Brillouin light scattering study [J].
Lendinez, Sergi ;
Taghipour Kaffash, Mojtaba ;
Jungfleisch, M. Benjamin .
APPLIED PHYSICS LETTERS, 2021, 118 (16)
[22]   Micromagnetic simulation of dynamic magnetic susceptibility and magnetostatic interaction fields of conical-shaped barium ferrite nanodot arrays [J].
Luo, Jun ;
Zheng, Hui ;
Deng, Jiangxia ;
Chen, Wei ;
Zheng, Peng ;
Zheng, Liang ;
Wu, Qiong ;
Zhang, Yang .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (40)
[24]   Characterization of magnetic properties at edges by edge-mode dynamics [J].
Maranville, BB ;
McMichael, RD ;
Kim, SA ;
Johnson, WL ;
Ross, CA ;
Cheng, JY .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (08)
[25]   Dynamic susceptibility of concentric permalloy rings with opposite chirality vortices [J].
McKeever, C. ;
Ogrin, F. Y. ;
Aziz, M. M. .
JOURNAL OF APPLIED PHYSICS, 2017, 121 (20)
[26]   Fast magnetization precession observed in L10-FePt epitaxial thin film [J].
Mizukami, S. ;
Iihama, S. ;
Inami, N. ;
Hiratsuka, T. ;
Kim, G. ;
Naganuma, H. ;
Oogane, M. ;
Ando, Y. .
APPLIED PHYSICS LETTERS, 2011, 98 (05)
[27]   Influence of anisotropic dipolar interaction on the spin dynamics of Ni80Fe20 nanodot arrays arranged in honeycomb and octagonal lattices [J].
Mondal, Sucheta ;
Barman, Saswati ;
Choudhury, Samiran ;
Otani, Yoshichika ;
Barman, Anjan .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2018, 458 :95-104
[28]   Dynamic micromagnetic simulation of permalloy antidot array film [J].
Mu, C. P. ;
Wang, W. W. ;
Zhang, B. ;
Liu, Q. F. ;
Wang, J. B. .
PHYSICA B-CONDENSED MATTER, 2010, 405 (05) :1325-1328
[29]   Growth of vertically aligned single-walled carbon nanotubes with metallic chirality through faceted FePt-Au catalysts [J].
Ohashi, Toshiyuki ;
Iwama, Hiroki ;
Shima, Toshiyuki .
JOURNAL OF APPLIED PHYSICS, 2016, 119 (08)
[30]   Dynamical electric and magnetic metamaterial response at terahertz frequencies [J].
Padilla, WJ ;
Taylor, AJ ;
Highstrete, C ;
Lee, M ;
Averitt, RD .
PHYSICAL REVIEW LETTERS, 2006, 96 (10)