Terahertz magnetic susceptibility of pyramid-shaped L10-FePt nanodot arrays

被引:0
作者
Zhao, Zhikun [1 ]
Dai, Guohong [1 ,2 ]
Wan, Shuhan [1 ]
Yan, Weichao [2 ]
Shen, Yun [1 ,2 ]
Deng, Xiaohua [2 ]
Xing, Xiangjun [3 ,4 ]
机构
[1] Nanchang Univ, Sch Phys & Mat Sci, Nanchang 330031, Peoples R China
[2] Nanchang Univ, Inst Space Sci & Technol, Nanchang 330031, Peoples R China
[3] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Guangdong, Peoples R China
[4] Guangdong Univ Technol, Guangdong Prov Key Lab Informat Photon Technol, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
FEPT NANOPARTICLES; FABRICATION; DYNAMICS;
D O I
10.1063/5.0169178
中图分类号
O59 [应用物理学];
学科分类号
摘要
Understanding the magnetic states and their dynamics in patterned ferromagnetic materials is of great importance for ultrahigh-density recording from the viewpoints of both fundamental research and practical applications. However, reliable access to magnetization dynamics in magnetic materials and devices on the technologically highly relevant terahertz range remains challenging. Currently, there is a lack of reports on terahertz magnetic susceptibility. Here, through micromagnetic simulations, we study the dynamics of pyramid-shaped, isolated magnetic nanodots and their arrays made of L1(0)-FePt with high magnetocrystalline anisotropy. Numerical results reveal a significant magnetic response of isolated pyramid nanodots in the terahertz range. Specifically, two resonant modes, namely, a bulk mode and an edge mode, have been identified. For the lateral size above similar to 100 nm, the nanodot's bulk mode splits and higher-order modes appear. Furthermore, the calculated spatial Fourier amplitude of resonant modes of nanopyramid arrays exhibits the dependence of lateral size and inter-dot spacing. These findings are expected to open up a promising route to terahertz spintronics utilizing magnetic nanostructures.
引用
收藏
页数:8
相关论文
共 41 条
[1]   TERANETS: ULTRA-BROADBAND COMMUNICATION NETWORKS IN THE TERAHERTZ BAND [J].
Akyildiz, Ian F. ;
Jornet, Josep Miquel ;
Han, Chong .
IEEE WIRELESS COMMUNICATIONS, 2014, 21 (04) :130-135
[2]   In Vitro and in Vivo Studies of FePt Nanoparticles for Dual Modal CT/MRI Molecular Imaging [J].
Chou, Shang-Wei ;
Shau, Yu-Hong ;
Wu, Ping-Ching ;
Yang, Yu-Sang ;
Shieh, Dar-Bin ;
Chen, Chia-Chun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (38) :13270-13278
[3]   Stress tunable dynamic susceptibility of a magnetic vortex in a flexible Fe81Ga19 nanoring [J].
Dai, Guohong ;
Xing, Xiangjun ;
Yan, Weichao ;
Shen, Yun ;
Deng, Xiaohua .
JOURNAL OF APPLIED PHYSICS, 2022, 132 (04)
[4]   Stress tunable magnetic stripe domains in flexible Fe81Ga19 films [J].
Dai, Guohong ;
Xing, Xiangjun ;
Shen, Yun ;
Deng, Xiaohua .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (05)
[5]   Collective magnonic modes of pairs of closely spaced magnetic nano-elements [J].
Dvornik, M. ;
Bondarenko, P. V. ;
Ivanov, B. A. ;
Kruglyak, V. V. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
[6]   Magnetostatic interactions between magnetic nanotubes [J].
Escrig, J. ;
Allende, S. ;
Altbir, D. ;
Bahiana, M. .
APPLIED PHYSICS LETTERS, 2008, 93 (02)
[7]   Materials for terahertz science and technology [J].
Ferguson, B ;
Zhang, XC .
NATURE MATERIALS, 2002, 1 (01) :26-33
[8]   Terahertz magnetic response and high dielectric constant in Ti:SmFeO3 composite ceramics [J].
Fu, Xiaojian ;
Zeng, Xinxi ;
Zhang, Hao Chi ;
Cui, Tie Jun .
MATERIALS LETTERS, 2016, 166 :235-238
[9]   Microstructure and magnetism of FeCo-SiO2 nano-granular films for high frequency application [J].
Ge, Shihui ;
Yao, Dongsheng ;
Yamaguchi, Masahiro ;
Yang, Xiaolin ;
Zuo, Huaping ;
Ishii, Takeshi ;
Zhou, Dong ;
Li, Fashen .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (12) :3660-3664
[10]   Micromagnetic calculation of the high frequency dynamics of nano-size rectangular ferromagnetic stripes [J].
Gérardin, O ;
Le Gall, H ;
Donahue, MJ ;
Vukadinovic, N .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (11) :7012-7014