From genetic correlations of Alzheimer's disease to classification with artificial neural network models

被引:1
作者
Cava, Claudia [1 ,2 ]
D'Antona, Salvatore [1 ]
Maselli, Francesca [1 ]
Castiglioni, Isabella [3 ]
Porro, Danilo [1 ,4 ]
机构
[1] CNR, Inst Mol Bioimaging & Physiol, Natl Res Council, IBFM, Via F Cervi 93, I-20090 Segrate, Milan, Italy
[2] Univ Sch Adv Studies IUSS Pavia, Dept Sci Technol & Soc, Piazza Vittoria 15, I-27100 Pavia, Italy
[3] Univ Milan Bicocca Piazza Ateneo Nuovo, Dept Phys Giuseppe Occhialini, I-20126 Milan, Italy
[4] Natl Biodivers Future Ctr, NBFC, I-90133 Palermo, Italy
关键词
Alzheimer; Gene expression; Genetic correlation; Neural network; DIET;
D O I
10.1007/s10142-023-01228-4
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Sporadic Alzheimer's disease (AD) is a complex neurological disorder characterized by many risk loci with potential associations with different traits and diseases. AD, characterized by a progressive loss of neuronal functions, manifests with different symptoms such as decline in memory, movement, coordination, and speech. The mechanisms underlying the onset of AD are not always fully understood, but involve a multiplicity of factors. Early diagnosis of AD plays a central role as it can offer the possibility of early treatment, which can slow disease progression. Currently, the methods of diagnosis are cognitive testing, neuroimaging, or cerebrospinal fluid analysis that can be time-consuming, expensive, invasive, and not always accurate. In the present study, we performed a genetic correlation analysis using genome-wide association statistics from a large study of AD and UK Biobank, to examine the association of AD with other human traits and disorders. In addition, since hippocampus, a part of cerebral cortex could play a central role in several traits that are associated with AD; we analyzed the gene expression profiles of hippocampus of AD patients applying 4 different artificial neural network models. We found 65 traits correlated with AD grouped into 9 clusters: medical conditions, fluid intelligence, education, anthropometric measures, employment status, activity, diet, lifestyle, and sexuality. The comparison of different 4 neural network models along with feature selection methods on 5 Alzheimer's gene expression datasets showed that the simple basic neural network model obtains a better performance (66% of accuracy) than other more complex methods with dropout and weight regularization of the network.
引用
收藏
页数:10
相关论文
共 42 条
[1]   State-of-the-art in artificial neural network applications: A survey [J].
Abiodun, Oludare Isaac ;
Jantan, Aman ;
Omolara, Abiodun Esther ;
Dada, Kemi Victoria ;
Mohamed, Nachaat AbdElatif ;
Arshad, Humaira .
HELIYON, 2018, 4 (11)
[2]   A large-scale genome-wide cross-trait analysis reveals shared genetic architecture between Alzheimer's disease and gastrointestinal tract disorders [J].
Adewuyi, Emmanuel O. ;
O'Brien, Eleanor K. ;
Nyholt, Dale R. ;
Porter, Tenielle ;
Laws, Simon M. .
COMMUNICATIONS BIOLOGY, 2022, 5 (01)
[3]   Multi-Omic analyses characterize the ceramide/sphingomyelin pathway as a therapeutic target in Alzheimer's disease [J].
Baloni, Priyanka ;
Arnold, Matthias ;
Buitrago, Luna ;
Nho, Kwangsik ;
Moreno, Herman ;
Huynh, Kevin ;
Brauner, Barbara ;
Louie, Gregory ;
Kueider-Paisley, Alexandra ;
Suhre, Karsten ;
Saykin, Andrew J. ;
Ekroos, Kim ;
Meikle, Peter J. ;
Hood, Leroy ;
Price, Nathan D. ;
Doraiswamy, P. Murali ;
Funk, Cory C. ;
Hernandez, A. Ivan ;
Kastenmueller, Gabi ;
Baillie, Rebecca ;
Han, Xianlin ;
Kaddurah-Daouk, Rima .
COMMUNICATIONS BIOLOGY, 2022, 5 (01)
[4]   Can Deep Learning Improve Genomic Prediction of Complex Human Traits? [J].
Bellot, Pau ;
de los Campos, Gustavo ;
Perez-Enciso, Miguel .
GENETICS, 2018, 210 (03) :809-819
[5]  
Biganzoli E, 1998, STAT MED, V17, P1169, DOI 10.1002/(SICI)1097-0258(19980530)17:10<1169::AID-SIM796>3.3.CO
[6]  
2-4
[7]   Dissecting the genetic relationship between cardiovascular risk factors and Alzheimer's disease [J].
Broce, Iris J. ;
Tan, Chin Hong ;
Fan, Chun Chieh ;
Jansen, Iris ;
Savage, Jeanne E. ;
Witoelar, Aree ;
Wen, Natalie ;
Hess, Christopher P. ;
Dillon, William P. ;
Glastonbury, Christine M. ;
Glymour, Maria ;
Yokoyama, Jennifer S. ;
Elahi, Fanny M. ;
Rabinovici, Gil D. ;
Miller, Bruce L. ;
Mormino, Elizabeth C. ;
Sperling, Reisa A. ;
Bennett, David A. ;
McEvoy, Linda K. ;
Brewer, James B. ;
Feldman, Howard H. ;
Hyman, Bradley T. ;
Pericak-Vance, Margaret ;
Haines, Jonathan L. ;
Farrer, Lindsay A. ;
Mayeux, Richard ;
Schellenberg, Gerard D. ;
Yaffe, Kristine ;
Sugrue, Leo P. ;
Dale, Anders M. ;
Posthuma, Danielle ;
Andreassen, Ole A. ;
Karch, Celeste M. ;
Desikan, Rahul S. .
ACTA NEUROPATHOLOGICA, 2019, 137 (02) :209-226
[8]   Projections of Alzheimer's disease in the United States and the public health impact of delaying disease onset [J].
Brookmeyer, R ;
Gray, S ;
Kawas, C .
AMERICAN JOURNAL OF PUBLIC HEALTH, 1998, 88 (09) :1337-1342
[9]   An atlas of genetic correlations across human diseases and traits [J].
Bulik-Sullivan, Brendan ;
Finucane, Hilary K. ;
Anttila, Verneri ;
Gusev, Alexander ;
Day, Felix R. ;
Loh, Po-Ru ;
Duncan, Laramie ;
Perry, John R. B. ;
Patterson, Nick ;
Robinson, Elise B. ;
Daly, Mark J. ;
Price, Alkes L. ;
Neale, Benjamin M. .
NATURE GENETICS, 2015, 47 (11) :1236-+
[10]   The UK Biobank resource with deep phenotyping and genomic data [J].
Bycroft, Clare ;
Freeman, Colin ;
Petkova, Desislava ;
Band, Gavin ;
Elliott, Lloyd T. ;
Sharp, Kevin ;
Motyer, Allan ;
Vukcevic, Damjan ;
Delaneau, Olivier ;
O'Connell, Jared ;
Cortes, Adrian ;
Welsh, Samantha ;
Young, Alan ;
Effingham, Mark ;
McVean, Gil ;
Leslie, Stephen ;
Allen, Naomi ;
Donnelly, Peter ;
Marchini, Jonathan .
NATURE, 2018, 562 (7726) :203-+