Zermelo navigation problems on surfaces of revolution and geometric optimal control

被引:0
作者
Bonnard, Bernard [1 ,2 ]
Cots, Olivier [3 ]
Wembe, Boris [3 ]
机构
[1] INRIA Sophia Antipolis, McTAO team, Valbonne, France
[2] UBFC, Inst Math Bourgogne, Besancon, France
[3] ENSEEIHT, IRIT, Toulouse, France
关键词
Zermelo navigation problems; optimal control; abnormal geodesics; conjugate and cut loci; regularity of the value function; CUT LOCI; CONJUGATE; 2-SPHERE; SYSTEMS;
D O I
10.1051/cocv/2023052
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, the historical study from Caratheodory-Zermelo about computing the quickest nautical path is generalized to Zermelo navigation problems on surfaces of revolution, in the frame of geometric optimal control. Using the Maximum Principle, we present two methods dedicated to analyzing the geodesic flow and to compute the conjugate and cut loci. We apply these calculations to investigate case studies related to applications in hydrodynamics, space mechanics and geometry.
引用
收藏
页码:376 / 814
页数:34
相关论文
共 34 条
  • [1] Arnold V.I., 1989, GRADUATE TEXTS MATH, V60, P508
  • [2] Arnold V.I., 1998, Appl. Math. Sci.
  • [3] Arnold V.-I., 1991, THEORY SINGULARITIES, P73
  • [4] Balsa C., 2020, CONTROLO 2020 LECT N, V695
  • [5] Bao D., 2000, An Introduction to Riemann-Finsler Geometry, Graduate Texts in Mathematics, V200
  • [6] Bolsinov A.V., 2004, INTEGRABLE HAMILTONI, P724
  • [7] Abnormal geodesics in 2D-Zermelo navigation problems in the case of revolution and the fan shape of the small time balls
    Bonnard, B.
    Cots, O.
    Gergaud, J.
    Wembe, B.
    [J]. SYSTEMS & CONTROL LETTERS, 2022, 161
  • [8] THEORY OF SINGULARITIES OF INPUT-OUTPUT APPLICATION AND OPTIMALITY OF SINGULAR TRAJECTORIES IN THE OPTIMAL-TIME PROBLEM
    BONNARD, B
    KUPKA, I
    [J]. FORUM MATHEMATICUM, 1993, 5 (02) : 111 - 159
  • [9] ACCESSIBILITY PROPERTIES OF ABNORMAL GEODESICS IN OPTIMAL CONTROL ILLUSTRATED BY TWO CASE STUDIES
    Bonnard, Bernard
    Rouot, Jeremy
    Wembe, Boris
    [J]. MATHEMATICAL CONTROL AND RELATED FIELDS, 2023, 13 (04) : 1618 - 1638
  • [10] A Zermelo navigation problem with a vortex singularity
    Bonnard, Bernard
    Cots, Olivier
    Wembe, Boris
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27