Numerical modelling of groundwater radionuclide transport with finite difference-based method of lines

被引:1
作者
Tanbay, Tayfun [1 ]
Durmayaz, Ahmet [2 ]
机构
[1] Bursa Tech Univ, Dept Mech Engn, Mimar Sinan Campus, TR-16310 Bursa, Turkiye
[2] Istanbul Tech Univ, Energy Inst, TR-34469 Istanbul, Turkiye
关键词
Groundwater radionuclide transport; Finite difference; Method of lines; Adaptive temporal differencing; Implicit scheme; FRACTURED POROUS-MEDIA; DECAY CHAIN; RADIOACTIVITY MIGRATION; DISPERSIVE TRANSPORT; DIFFUSION; ELEMENT; ROCK; REPOSITORY; EQUATIONS; BEHAVIOR;
D O I
10.1007/s10967-023-09020-1
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this study, the advection-dispersion equation with decay is numerically solved by the finite difference-based method of lines (FD-MOL) to simulate groundwater radionuclide transport. Finite difference orders of 1,2,.,8 are used for spatial approximation, while the linearly implicit Euler scheme is employed adaptively for temporal discretization. Four different problems are investigated, and results show that FD-MOL provides accurate and stable numerical solutions. Coarse temporal grids can be utilized implicitly, for instance, a maximum step of 1000 years with 400 spatial nodes yields RMS errors of 7.508 x 10(-6), 7.395 x10(-5) and 7.705 x10(-6) in (234) (92) U, (230) (90) Th and (226) (88) Ra normalized concentrations, respectively, for the decay chain problem.
引用
收藏
页码:4833 / 4845
页数:13
相关论文
共 46 条
[1]   A novel dual reciprocity boundary element formulation for two-dimensional transient convection diffusion reaction problems with variable velocity [J].
AL-Bayati, Salam A. ;
Wrobel, Luiz C. .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2018, 94 :60-68
[2]   Numerical modeling of the flow and transport of radionuclides in heterogeneous porous media [J].
Amaziane, Brahim ;
El Ossmani, Mustapha ;
Serres, Christophe .
COMPUTATIONAL GEOSCIENCES, 2008, 12 (04) :437-449
[3]   Evaluation of groundwater tritium content and mixing behavior of Tatapani geothermal systems, Chhattisgarh, India [J].
Ansari, Md. Arzoo ;
Sinha, U. K. ;
Deodhar, Archana ;
Mendhekar, G. N. ;
Kumar, Mukund ;
Patbhaje, S. D. ;
Dash, Ashutosh .
JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2017, 313 (03) :617-623
[4]   Colloid-facilitated radionuclide transport in fractured porous rock [J].
Baek, I ;
Pitt, WW .
WASTE MANAGEMENT, 1996, 16 (04) :313-325
[5]   Numerical modeling of two species radionuclide transport in a single fracture matrix system with variable fracture aperture [J].
Bagalkot, Nikhil ;
Kumar, Govindarajan Suresh .
GEOSCIENCES JOURNAL, 2016, 20 (05) :627-638
[6]   Transport of a decay chain in homogenous porous media: analytical solutions [J].
Bauer, P ;
Attinger, S ;
Kinzelbach, W .
JOURNAL OF CONTAMINANT HYDROLOGY, 2001, 49 (3-4) :217-239
[7]   Radionuclide Transport Behavior in a Generic Geological Radioactive Waste Repository [J].
Bianchi, Marco ;
Liu, Hui-Hai ;
Birkholzer, Jens T. .
GROUNDWATER, 2015, 53 (03) :440-451
[8]   NUMERICAL-STUDIES OF TRANSPORT IN POROUS-MEDIA .3. RADIOISOTOPE MIGRATION IN FRACTURE ANGLE FORMATIONS [J].
BUCKLEY, RL ;
LOYALKA, SK ;
WILLIAMS, MMR .
ANNALS OF NUCLEAR ENERGY, 1993, 20 (08) :569-584
[9]   Radionuclide transport in fractured porous media - Analytical solutions for a system of parallel fractures with a constant inlet flux [J].
Chen, CT ;
Li, SH .
WASTE MANAGEMENT, 1997, 17 (01) :53-64
[10]   Generalized analytical solutions to sequentially coupled multi-species advective-dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition [J].
Chen, Jui-Sheng ;
Liu, Chen-Wuing ;
Liang, Ching-Ping ;
Lai, Keng-Hsin .
JOURNAL OF HYDROLOGY, 2012, 456 :101-109