A detailed quasigeoid model of the Hong Kong territories computed by applying a finite-element method of solving the oblique derivative boundary-value problem

被引:2
作者
Cunderlik, Robert [2 ]
Tenzer, Robert [1 ]
Macak, Marek [2 ]
Zahorec, Pavol [3 ]
Papco, Juraj [4 ]
Nsiah Ababio, Albertini [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Kowloon, 181 Chatham Rd South, Hong Kong, Peoples R China
[2] Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math & Descript Geometry, Bratislava, Slovakia
[3] Slovak Acad Sci, Earth Sci Inst, Dept Gravimetry & Geodynam, Banska Bystrica, Slovakia
[4] Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Global Geodesy & Geoinformat, Bratislava, Slovakia
关键词
boundary-value problem; finite-element method; gravity; heights; levelling; vertical geodetic control; (quasi)geoid; NUMERICAL-SOLUTION; SCHEME;
D O I
10.1515/jogs-2022-0153
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
New gravity and precise levelling measurements have been performed throughout the Hong Kong territories to modernize a vertical geodetic datum that is currently realized by heights of levelling benchmarks defined in the Hong Kong Principal Datum (HKPD). Modernization of the HKPD involved delivering various products, including new detailed geoid and quasigeoid models and newly determined orthometric and normal heights of levelling benchmarks. In this study, we present the result of gravimetric quasigeoid modelling. The method used to compute a detailed gravimetric quasigeoid model is based on the finite-element method to solve the geodetic boundary-value problem with oblique derivative boundary conditions considered directly at computational nodes on the discretized Earth's topography. The result of a gravimetric quasigeoid modelling shows a good agreement with a geometric quasigeoid model at the Global Navigation Satellite System (GNSS)-levelling benchmarks. The standard deviation of differences between the gravimetric and geometric quasigeoid heights of +/- 3.3 cm is compatible with the expected accuracy of gravity, levelling, and GNSS measurements.
引用
收藏
页数:13
相关论文
共 41 条
[1]   Compilation of the new detailed geoid model HKGEOID-2022 for the Hong Kong territories [J].
Ababio, Albertini Nsiah ;
Tenzer, Robert .
MARINE GEODESY, 2022, 45 (06) :688-709
[2]   The use of gravity data to determine orthometric heights at the Hong Kong territories [J].
Ababio, Albertini Nsiah ;
Tenzer, Robert .
JOURNAL OF APPLIED GEODESY, 2022, 16 (04) :401-416
[3]  
Andersen O.B., 2021, EGU GEN ASSEMBLY 202, DOI [10.5194/egusphere-egu21-16084, DOI 10.5194/EGUSPHERE-EGU21-16084]
[4]  
Bian Shaofeng, 1991, Manuscripta Geodaetica, V16, P353
[5]  
Bjerhammar A., 1983, Bulletin Geodesique, V57, P382, DOI 10.1007/BF02520941
[6]  
BRENNER S., 2007, The mathematical theory of finite element methods
[7]   ESA's satellite-only gravity field model via the direct approach based on all GOCE data [J].
Bruinsma, Sean L. ;
Foerste, Christoph ;
Abrikosov, Oleg ;
Lemoine, Jean-Michel ;
Marty, Jean-Charles ;
Mulet, Sandrine ;
Rio, Marie-Helene ;
Bonvalot, Sylvain .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (21) :7508-7514
[8]   Numerical solution of the linearized fixed gravimetric boundary-value problem [J].
Cunderlik, R. ;
Mikula, K. ;
Mojzes, M. .
JOURNAL OF GEODESY, 2008, 82 (01) :15-29
[9]   Direct BEM for high-resolution global gravity field modelling [J].
Cunderlik, Robert ;
Mikula, Karol .
STUDIA GEOPHYSICA ET GEODAETICA, 2010, 54 (02) :219-238
[10]   Design and analysis of finite volume methods for elliptic equations with oblique derivatives; application to Earth gravity field modelling [J].
Droniou, Jerome ;
Medla, Matej ;
Mikula, Karol .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 398