Flexible and robust nanofiber sponge with superior capacity to transport water for efficient and sustained solar-driven interfacial evaporation

被引:23
|
作者
Yuan, Zhipeng [1 ]
Zhang, Xinen [1 ]
Zhang, Jing [1 ]
Zhao, Xinfu [1 ]
Liu, Sijia [1 ]
Yu, Shimo [1 ]
Liu, Xiaochan [1 ]
Yi, Xibin [1 ]
机构
[1] Qilu Univ Technol, Adv Mat Inst, Shandong Acad Sci, Shandong Key Lab Special Silicon containing Mat, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
Solar-driven interfacial evaporation; Electrospinning; Nanofiber sponge; Desalination; HIGHLY EFFICIENT;
D O I
10.1016/j.desal.2023.116399
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Solar-driven interfacial evaporation is an emerging route for desalination and wastewater treatment with great potential to alleviate freshwater shortages. However, the current solar-driven interfacial evaporation systems generally suffer from complex design, poor customization and salt accumulation issues. Design and preparation of solar-driven interfacial evaporation systems with excellent comprehensive performance and capable of being mass-produced remains a great challenge. Herein, we demonstrate a novel electrospun nanofiber sponge for efficient and sustained solar-driven interfacial evaporation. The nanofibrous structure of its surface can promote the absorption of light, and its interconnected pore structure is conducive to the diffusion of water vapor, thereby improving the evaporation effect. Under 1 sun irradiation (1 kW.m(-2)), the nanofiber sponge interfacial evaporation system showed an outstanding water evaporation rate (1.57 kg.m(-2).h(-1)) with 95.6 % evaporation efficiency. The hierarchical porous structure, super-hydrophilic properties and integrated design of evaporation and mass transfer make it have superior water transport capacity and excellent salt self-discharge performance. Simultaneously, the excellent strength, flexibility, and processability of the nanofiber sponge can realize the customized fabrication of solar interfacial evaporation systems. This work is expected to advance the development of solar-driven interfacial evaporation systems toward compact, independent and portable.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Biomass photothermal structures with carbonized durian for efficient solar-driven water evaporation
    Zeng, Long
    Deng, Daxiang
    Zhu, Linye
    Wang, Huimin
    Zhang, Zhenkun
    Yao, Yingxue
    ENERGY, 2023, 273
  • [42] A low-cost carbonized Enteromorpha-coated wood for highly efficient solar-driven interfacial water evaporation
    Qiu, Yongfeng
    Lu, Hui
    Chen, Cairong
    COLLOID AND POLYMER SCIENCE, 2024, 302 (01) : 71 - 78
  • [43] Self-floating Porous PVDF-CNT Microbeads for Highly Efficient Solar-driven Interfacial Water Evaporation
    Liang Pingping
    Liu Shuai
    Li Hongyi
    Ding Yadan
    Wen Xiaokun
    Liu Junping
    Hong Xia
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2021, 42 (08): : 2689 - 2693
  • [44] Flexible Janus Black Silicon Photothermal Conversion Membranes for Highly Efficient Solar-Driven Interfacial Water Purification
    Zhou, Chuanling
    Mei, Qiuyu
    Huang, Limingming
    Mao, Tingting
    Li, Shuangfu
    Wang, Zhian
    Wan, Hua
    Gu, Hui
    Han, Kai
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (20) : 26153 - 26166
  • [45] Efficient solar-driven interfacial water evaporation: Construction of facilely PVA/TA/GO gel copper foam evaporator
    Tan, Xinyan
    Yuan, Xin
    Sun, Yuqing
    Liu, Weimin
    Li, Jian
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (06):
  • [46] A Janus porous carbon nanotubes/poly (vinyl alcohol) composite evaporator for efficient solar-driven interfacial water evaporation
    Jian, Hongwei
    Qi, Qingbin
    Wang, Wei
    Yu, Dan
    Separation and Purification Technology, 2021, 264
  • [47] A Janus porous carbon nanotubes/poly (vinyl alcohol) composite evaporator for efficient solar-driven interfacial water evaporation
    Jian, Hongwei
    Qi, Qingbin
    Wang, Wei
    Yu, Dan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 264
  • [48] Self-Healing Hydrophilic Porous Photothermal Membranes for Durable and Highly Efficient Solar-Driven Interfacial Water Evaporation
    Xu, Fuchang
    Weng, Dehui
    Li, Xiang
    Li, Yang
    Sun, Junqi
    CCS CHEMISTRY, 2022, 4 (07): : 2396 - 2408
  • [49] Hydrophobic and porous carbon nanofiber membrane for high performance solar-driven interfacial evaporation with excellent salt resistance
    Zhang, Wei-miao
    Yan, Jun
    Su, Qin
    Han, Jiang
    Gao, Jie-feng
    Journal of Colloid and Interface Science, 2022, 612 : 66 - 75
  • [50] Hydrophobic and porous carbon nanofiber membrane for high performance solar-driven interfacial evaporation with excellent salt resistance
    Zhang, Wei-miao
    Yan, Jun
    Su, Qin
    Han, Jiang
    Gao, Jie-feng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 612 : 66 - 75