Building an automated, machine learning-enabled platform for predicting post-operative complications

被引:2
作者
Balch, Jeremy A. [1 ,2 ]
Rupert, Matthew M. [1 ,3 ]
Shickel, Benjamin [1 ,3 ]
Ozrazgat-Baslanti, Tezcan [1 ,3 ]
Tighe, Patrick J. [4 ]
Efron, Philip A. [2 ]
Upchurch, Gilbert R. [2 ]
Rashidi, Parisa [1 ,5 ]
Bihorac, Azra [1 ,3 ]
Loftus, Tyler J. [1 ,2 ]
机构
[1] Univ Florida, Intelligent Crit Care Ctr, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Surg, Gainesville, FL 32611 USA
[3] Univ Florida, Dept Med, Gainesville, FL USA
[4] Univ Florida, Dept Anesthesiol, Gainesville, FL USA
[5] Univ Florida, Dept Biomed Engn, Gainesville, FL USA
基金
美国国家科学基金会;
关键词
clinical decision support; artificial intelligence; machine learning; surgery; post operative complications; VALIDATION; EMERGENCY;
D O I
10.1088/1361-6579/acb4db
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Objective. In 2019, the University of Florida College of Medicine launched the MySurgeryRisk algorithm to predict eight major post-operative complications using automatically extracted data from the electronic health record. Approach. This project was developed in parallel with our Intelligent Critical Care Center and represents a culmination of efforts to build an efficient and accurate model for data processing and predictive analytics. Main Results and Significance. This paper discusses how our model was constructed and improved upon. We highlight the consolidation of the database, processing of fixed and time-series physiologic measurements, development and training of predictive models, and expansion of those models into different aspects of patient assessment and treatment. We end by discussing future directions of the model.
引用
收藏
页数:9
相关论文
共 43 条
[21]  
Ghassemi M, 2021, LANCET DIGIT HEALTH, V3, pE745, DOI 10.1016/S2589-7500(21)00208-9
[22]   Risk Prediction Accuracy Differs for Emergency Versus Elective Cases in the ACS-NSQIP [J].
Hyder, Joseph A. ;
Reznor, Gally ;
Wakeam, Elliot ;
Nguyen, Louis L. ;
Lipsitz, Stuart R. ;
Havens, Joaquim M. .
ANNALS OF SURGERY, 2016, 264 (06) :959-965
[23]  
Intelligent Critical Care Center (IC3), 2022, US
[24]   MIMIC-III, a freely accessible critical care database [J].
Johnson, Alistair E. W. ;
Pollard, Tom J. ;
Shen, Lu ;
Lehman, Li-wei H. ;
Feng, Mengling ;
Ghassemi, Mohammad ;
Moody, Benjamin ;
Szolovits, Peter ;
Celi, Leo Anthony ;
Mark, Roger G. .
SCIENTIFIC DATA, 2016, 3
[25]   Equity and Artificial Intelligence in Surgical Care [J].
Johnson-Mann, Crystal N. ;
Loftus, Tyler J. ;
Bihorac, Azra .
JAMA SURGERY, 2021, 156 (06) :509-510
[26]  
Loftus T J., 2022, ANN SURG
[27]   Federated learning for preserving data privacy in collaborative healthcare research [J].
Loftus, Tyler J. ;
Ruppert, Matthew M. ;
Shickel, Benjamin ;
Ozrazgat-Baslanti, Tezcan ;
Balch, Jeremy A. ;
Efron, Philip A. ;
Upchurch, Gilbert R. ;
Rashidi, Parisa ;
Tignanelli, Christopher ;
Bian, Jiang ;
Bihorac, Azra .
DIGITAL HEALTH, 2022, 8
[28]   Association of Postoperative Undertriage to Hospital Wards With Mortality and Morbidity [J].
Loftus, Tyler J. ;
Ruppert, Matthew M. ;
Ozrazgat-Baslanti, Tezcan ;
Balch, Jeremy A. ;
Efron, Philip A. ;
Tighe, Patrick J. ;
Hogan, William R. ;
Rashidi, Parisa ;
Upchurch, Gilbert R., Jr. ;
Bihorac, Azra .
JAMA NETWORK OPEN, 2021, 4 (11)
[29]   Autonomous detection of disruptions in the intensive care unit using deep mask R-CNN [J].
Malhotra, Kumar Rohit ;
Davoudi, Anis ;
Siegel, Scott ;
Bihorac, Azra ;
Rashidi, Parisa .
PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, :1944-1946
[30]   Development and validation of the Surgical Outcome Risk Tool (SORT) [J].
Protopapa, K. L. ;
Simpson, J. C. ;
Smith, N. C. E. ;
Moonesinghe, S. R. .
BRITISH JOURNAL OF SURGERY, 2014, 101 (13) :1774-1783