Image-to-Height Domain Translation for Synthetic Aperture Sonar

被引:2
|
作者
Stewart, Dylan [1 ]
Kreulach, Austin [1 ]
Johnson, Shawn F. F. [2 ]
Zare, Alina [1 ]
机构
[1] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
[2] Penn State Univ, Appl Res Lab, State Coll, PA 16801 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
关键词
Synthetic aperture sonar; Sonar; Estimation; Data models; Apertures; Sensors; Sea surface; Bathymetry; circular Synthetic Aperture Sonar (cSAS); conditional Generative Adversarial Network (cGAN); domain translation; Gaussian Markov random field (GMRF); pix2pix; SAS; UNet; RECONSTRUCTION;
D O I
10.1109/TGRS.2023.3236473
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Synthetic aperture sonar (SAS) intensity statistics are dependent upon the sensing geometry at the time of capture. Estimating bathymetry from acoustic surveys is challenging. While several methods have been proposed to estimate seabed relief via intensity, we develop the first large-scale study that relies on deep learning models. In this work, we pose bathymetric estimation from SAS surveys as a domain translation problem of translating intensity to height. Since no dataset of coregistered seabed relief maps and sonar imagery previously existed to learn this domain translation, we produce the first large simulated dataset containing coregistered pairs of seabed relief and intensity maps from two unique sonar data simulation techniques. We apply four types of models, with varying complexity, to translate intensity imagery to seabed relief: a shape-from-shading (SFS) approach, a Gaussian Markov random field (GMRF) approach, a conditional Generative Adversarial Network (cGAN), and UNet architectures. Each model is applied to datasets containing sand ripples, rocky, mixed, and flat sea bottoms. Methods are compared in reference to the coregistered simulated datasets using L1 error. Additionally, we provide results on simulated and real SAS imagery. Our results indicate that the proposed UNet architectures outperform an SFS, a GMRF, and a pix2pix cGAN model.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Synthetic Aperture Sonar Interferogram Filtering by Intensity Image Segmentation
    Lorentzen, Ole Jacob
    Saebo, Torstein Olsmo
    Hunter, Alan J.
    Hansen, Roy Edgar
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2024, 49 (04) : 1516 - 1529
  • [2] Fourier-Domain Wavefield Rendering for Rapid Simulation of Synthetic Aperture Sonar Data
    Sanford, Ciaran J.
    Thomas, Benjamin W.
    Hunter, Alan J.
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2024, 49 (04) : 1501 - 1515
  • [3] Shallow Water Height Mapping With Interferometric Synthetic Aperture Sonar
    Silva, Sergio Rui
    Cunha, Sergio
    Matos, Anibal
    Cruz, Nuno
    OCEANS 2008, VOLS 1-4, 2008, : 1135 - 1141
  • [4] Synthetic Aperture Sonar: A Review of Current Status
    Hayes, Michael P.
    Gough, Peter T.
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2009, 34 (03) : 207 - 224
  • [5] An Algebraic Approach to Synthetic Aperture Sonar Image Reconstruction
    Silva, Sergio Rui
    Cunha, Sergio
    Matos, Anibal
    Cruz, Nuno
    OCEANS 2008, VOLS 1-4, 2008, : 1150 - 1156
  • [6] Backscatter Features for Estimating Synthetic Aperture Sonar Bathymetry
    Lorentzen, Ole J.
    Saebo, Torstein O.
    Hansen, Roy E.
    GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 2020,
  • [7] Synthetic aperture image formation for multi-receiver syntehtic aperture sonar
    Zhang, Xuebo
    Fang, Biao
    PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 2060 - 2064
  • [8] Synthetic Aperture Sonar Technology Review
    Hansen, Roy Edgar
    MARINE TECHNOLOGY SOCIETY JOURNAL, 2013, 47 (05) : 117 - 127
  • [9] Autocorrelation Features for Synthetic Aperture Sonar Image Seabed Segmentation
    Cobb, J. Tory
    Principe, Jose
    2011 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2011, : 3341 - 3346
  • [10] Guest Editorial: Synthetic aperture in sonar and radar
    Martorella, Marco
    Heald, Gary
    Lyons, Anthony
    Antoniou, Michail
    IET RADAR SONAR AND NAVIGATION, 2024, 18 (11) : 2017 - 2019