Artificial intelligence in improving the outcome of surgical treatment in colorectal cancer

被引:0
作者
Avram, Mihaela Flavia [1 ,2 ]
Lazar, Daniela Cornelia [3 ]
Maris, Mihaela Ioana [4 ,5 ]
Olariu, Sorin [1 ]
机构
[1] Victor Babes Univ Med & Pharm Timisoara, Dept Surgery 10, Surg Discipline 1, Timisoara, Romania
[2] Politehn Univ Timisoara, Dept Math, Timisoara, Romania
[3] Victor Babes Univ Med & Pharm Timisoara, Dept Internal Med 5 1, Discipline Internal Med 4, Timisoara, Romania
[4] Victor Babes Univ Med & Pharm Timisoara, Dept Funct Sci, Div Physiopathol, Timisoara, Romania
[5] Victor Babes Univ Med & Pharm Timisoara, Ctr Translat Res & Syst Med, Timisoara, Romania
来源
FRONTIERS IN ONCOLOGY | 2023年 / 13卷
关键词
artificial intelligence; colorectal cancer; automated robotic surgery; phase recognition; excision plane navigation; endoscopy control; annotated video banks; SURGERY; ROBOTICS;
D O I
10.3389/fonc.2023.1116761
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BackgroundA considerable number of recent research have used artificial intelligence (AI) in the area of colorectal cancer (CRC). Surgical treatment of CRC still remains the most important curative component. Artificial intelligence in CRC surgery is not nearly as advanced as it is in screening (colonoscopy), diagnosis and prognosis, especially due to the increased complexity and variability of structures and elements in all fields of view, as well as a general shortage of annotated video banks for utilization. MethodsA literature search was made and relevant studies were included in the minireview. ResultsThe intraoperative steps which, at this moment, can benefit from AI in CRC are: phase and action recognition, excision plane navigation, endoscopy control, real-time circulation analysis, knot tying, automatic optical biopsy and hyperspectral imaging. This minireview also analyses the current advances in robotic treatment of CRC as well as the present possibility of automated CRC robotic surgery. ConclusionsThe use of AI in CRC surgery is still at its beginnings. The development of AI models capable of reproducing a colorectal expert surgeon's skill, the creation of large and complex datasets and the standardization of surgical colorectal procedures will contribute to the widespread use of AI in CRC surgical treatment.
引用
收藏
页数:7
相关论文
共 47 条
  • [31] Computer-Assisted Differentiation between Colon-Mesocolon and Retroperitoneum Using Hyperspectral Imaging (HSI) Technology
    Okamoto, Nariaki
    Rodriguez-Luna, Maria Rita
    Bencteux, Valentin
    Al-Taher, Mahdi
    Cinelli, Lorenzo
    Felli, Eric
    Urade, Takeshi
    Nkusi, Richard
    Mutter, Didier
    Marescaux, Jacques
    Hostettler, Alexandre
    Collins, Toby
    Diana, Michele
    [J]. DIAGNOSTICS, 2022, 12 (09)
  • [32] A comprehensive review of deep learning in colon cancer
    Pacal, Ishak
    Karaboga, Dervis
    Basturk, Alper
    Akay, Bahriye
    Nalbantoglu, Ufuk
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 126
  • [33] The PRISMA 2020 statement: An updated guideline for reporting systematic reviews
    Page, Matthew J.
    McKenzie, Joanne E.
    Bossuyt, Patrick M.
    Boutron, Isabelle
    Hoffmann, Tammy C.
    Mulrow, Cynthia D.
    Shamseer, Larissa
    Tetzlaff, Jennifer M.
    Akl, Elie A.
    Brennan, Sue E.
    Chou, Roger
    Glanville, Julie
    Grimshaw, Jeremy M.
    Hrobjartsson, Asbjorn
    Lalu, Manoj M.
    Li, Tianjing
    Loder, Elizabeth W.
    Mayo-Wilson, Evan
    McDonald, Steve
    McGuinness, Luke A.
    Stewart, Lesley A.
    Thomas, James
    Tricco, Andrea C.
    Welch, Vivian A.
    Whiting, Penny
    Moher, David
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2021, 134 : 178 - 189
  • [34] Artificial intelligence based real-time microcirculation analysis system for laparoscopic colorectal surgery
    Park, Sang-Ho
    Park, Hee-Min
    Baek, Kwang-Ryul
    Ahn, Hong-Min
    Lee, In Young
    Son, Gyung Mo
    [J]. WORLD JOURNAL OF GASTROENTEROLOGY, 2020, 26 (44) : 6945 - 6962
  • [35] Artificial Intelligence in Colorectal Cancer Surgery: Present and Future Perspectives
    Quero, Giuseppe
    Mascagni, Pietro
    Kolbinger, Fiona R.
    Fiorillo, Claudio
    De Sio, Davide
    Longo, Fabio
    Schena, Carlo Alberto
    Laterza, Vito
    Rosa, Fausto
    Menghi, Roberta
    Papa, Valerio
    Tondolo, Vincenzo
    Cina, Caterina
    Distler, Marius
    Weitz, Juergen
    Speidel, Stefanie
    Padoy, Nicolas
    Alfieri, Sergio
    [J]. CANCERS, 2022, 14 (15)
  • [36] Artificial Intelligence-Assisted Gastroenterology-Promises and Pitfalls
    Ruffle, James K.
    Farmer, Adam D.
    Aziz, Qasim
    [J]. AMERICAN JOURNAL OF GASTROENTEROLOGY, 2019, 114 (03) : 422 - 428
  • [37] Autonomous robotic laparoscopic surgery for intestinal anastomosis
    Saeidi, H.
    Opfermann, J. D.
    Kam, M.
    Wei, S.
    Leonard, S.
    Hsieh, M. H.
    Kang, J. U.
    Krieger, A.
    [J]. SCIENCE ROBOTICS, 2022, 7 (62)
  • [38] Supervised autonomous robotic soft tissue surgery
    Shademan, Azad
    Decker, Ryan S.
    Opfermann, Justin D.
    Leonard, Simon
    Krieger, Axel
    Kim, Peter C. W.
    [J]. SCIENCE TRANSLATIONAL MEDICINE, 2016, 8 (337)
  • [39] Shalev-Shwartz S., 2014, Understanding machine learning: from theory to algorithms
  • [40] Sonka M., 2014, Cengage Learning