共 50 条
Predictive Model for Preeclampsia Combining sFlt-1, PlGF, NT-proBNP, and Uric Acid as Biomarkers
被引:6
|作者:
Garrido-Gimenez, Carmen
[1
,2
,3
,4
]
Cruz-Lemini, Monica
[1
,2
,3
,4
]
Alvarez, Francisco V.
[5
,6
]
Nan, Madalina Nicoleta
[7
]
Carretero, Francisco
[5
,6
,8
]
Fernandez-Oliva, Antonio
[1
,2
]
Mora, Josefina
[7
]
Sanchez-Garcia, Olga
[2
,3
,4
]
Garcia-Osuna, Alvaro
[7
]
Alijotas-Reig, Jaume
[9
,10
]
Llurba, Elisa
[1
,2
,3
,4
]
机构:
[1] Univ Autonoma Barcelona, Hosp Santa Creu & St Pau, Dept Obstet & Gynecol, Maternal Fetal Med Unit, St Antoni Maria Claret 167, Barcelona 08025, Spain
[2] Inst Invest Biomed St Pau, Women & Perinatal Hlth Res Grp, St Quinti 77-79, Barcelona 08041, Spain
[3] Inst Salud Carlos III, Primary Care Intervent Prevent Maternal & Child C, SAMID RICORS, RD21 0012, Madrid 28040, Spain
[4] Inst Salud Carlos III, Maternal & Child Hlth Dev Network SAMID RD16 0022, Madrid 28040, Spain
[5] Univ Oviedo, Hosp Univ Cent Asturias, Lab Med, Clin Biochem, Oviedo 33011, Spain
[6] Univ Oviedo, Dept Biochem & Mol Biol, Oviedo 33011, Spain
[7] Univ Autonoma Barcelona, Hosp Santa Creu & St Pau, Clin Biochem, Barcelona 08025, Spain
[8] Univ Oviedo, Catedra Inteligencia Analit, Oviedo 33011, Spain
[9] Univ Autonoma Barcelona, Vall dHebron Univ Hosp, Internal Med Dept, Syst Autoimmune Dis Unit,Dept Med, Barcelona 08025, Spain
[10] Vall dHebron Hosp, Vall dHebron Res Inst, Syst Autoimmune Dis Res Grp, Barcelona 08025, Spain
关键词:
angiogenic factors;
machine-learning;
N-terminal pro-brain natriuretic peptide (NT-proBNP);
placental growth factor (PlGF);
prediction;
preeclampsia;
soluble fms-like tyrosine kinase 1 (sFlt-1);
uric acid;
GROWTH-FACTOR RATIO;
BRAIN NATRIURETIC PEPTIDE;
HYPERTENSIVE DISORDERS;
TYROSINE KINASE-1;
WOMEN;
PREGNANCY;
FETAL;
DELIVERY;
VALUES;
SERUM;
D O I:
10.3390/jcm12020431
中图分类号:
R5 [内科学];
学科分类号:
1002 ;
100201 ;
摘要:
N-terminal pro-brain natriuretic peptide (NT-proBNP) and uric acid are elevated in pregnancies with preeclampsia (PE). Short-term prediction of PE using angiogenic factors has many false-positive results. Our objective was to validate a machine-learning model (MLM) to predict PE in patients with clinical suspicion, and evaluate if the model performed better than the sFlt-1/PlGF ratio alone. A multicentric cohort study of pregnancies with suspected PE between 24(+0) and 36(+6) weeks was used. The MLM included six predictors: gestational age, chronic hypertension, sFlt-1, PlGF, NT-proBNP, and uric acid. A total of 936 serum samples from 597 women were included. The PPV of the MLM for PE following 6 weeks was 83.1% (95% CI 78.5-88.2) compared to 72.8% (95% CI 67.4-78.4) for the sFlt-1/PlGF ratio. The specificity of the model was better; 94.9% vs. 91%, respectively. The AUC was significantly improved compared to the ratio alone [0.941 (95% CI 0.926-0.956) vs. 0.901 (95% CI 0.880-0.921), p < 0.05]. For prediction of preterm PE within 1 week, the AUC of the MLM was 0.954 (95% CI 0.937-0.968); significantly greater than the ratio alone [0.914 (95% CI 0.890-0.934), p < 0.01]. To conclude, an MLM combining the sFlt-1/PlGF ratio, NT-proBNP, and uric acid performs better to predict preterm PE compared to the sFlt-1/PlGF ratio alone, potentially increasing clinical precision.
引用
收藏
页数:13
相关论文