Intelligent skin cancer diagnosis using adaptive k-means segmentation and deep learning models

被引:1
|
作者
Enturi, Bala Krishna Manash [1 ,3 ]
Suhasini, A. [1 ]
Satyala, Narayana [2 ]
机构
[1] Annamalai Univ, Dept Comp Sci Engn, Chidambaram, India
[2] Gudlavalleru Engn Coll, Dept Comp Sci & Engn, Gudlavalleru, India
[3] Annamalai Univ, Dept Comp Sci Engn, Chidambaram 608002, Tamil Nadu, India
关键词
adaptive K-means algorithm; DRLBP; GLCM; GLRM features; HKPCA; IEHO; skin cancer classification; LESION SEGMENTATION; CLASSIFICATION; MELANOMA; IMAGES; ALGORITHM; FRAMEWORK; ENSEMBLE;
D O I
10.1002/cpe.7546
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Since melanoma spreads swiftly throughout the body, it is typically a deadly form of skin cancer. Only when skin cancer is discovered early on is it usually treatable. In order to do this, this work proposes a unique melanoma detection model that has five main phases, including (i) pre-processing, (ii) segmentation, (iii) feature extraction, (iv) suggested HKPCA based dimensionality reduction, and (v) classification. Pre-processing is done first, and segmentation is done using a new adaptive k-means methodology after that. After that, features from the gray-level co-occurrence matrix (GLCM), deviation relevance based local binary pattern (DRLBP), and gray-level run-length matrix (GLRM) is extracted. Extracted features were subjected for dimensionality reduction via hybrid kernel proposed principal component analysis (HKPCA). These dimension reduced features are then classified using deep belief network (DBN) framework, where the weights will be optimized by means of improved elephant herding optimization (IEHO). Finally, a comparison of the proposed and existing models' convergent performance is conducted.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Improving Automatic Melanoma Diagnosis Using Deep Learning-Based Segmentation of Irregular Networks
    Nambisan, Anand K.
    Maurya, Akanksha
    Lama, Norsang
    Phan, Thanh
    Patel, Gehana
    Miller, Keith
    Lama, Binita
    Hagerty, Jason
    Stanley, Ronald
    Stoecker, William V.
    CANCERS, 2023, 15 (04)
  • [42] Melanoma skin cancer detection using deep learning-based lesion segmentation
    Behera N.
    Singh A.P.
    Rout J.K.
    Balabantaray B.K.
    International Journal of Information Technology, 2024, 16 (6) : 3729 - 3744
  • [43] The future of skin cancer diagnosis: a comprehensive systematic literature review of machine learning and deep learning models
    Adamu, Shamsuddeen
    Alhussian, Hitham
    Aziz, Norshakirah
    Abdulkadir, Said Jadid
    Alwadin, Ayed
    Imam, Abdullahi Abubakar
    Abdullahi, Mujaheed
    Garba, Aliyu
    Saidu, Yahaya
    COGENT ENGINEERING, 2024, 11 (01):
  • [44] Automatic segmentation of melanoma skin cancer using transfer learning and fine-tuning
    Araujo, Rafael Luz
    de Araujo, Flavio H. D.
    e Silva, Romuere R., V
    MULTIMEDIA SYSTEMS, 2022, 28 (04) : 1239 - 1250
  • [45] Skin Lesion Segmentation and Classification Using Conventional and Deep Learning Based Framework
    Bibi, Amina
    Khan, Muhamamd Attique
    Javed, Muhammad Younus
    Tariq, Usman
    Kang, Byeong-Gwon
    Nam, Yunyoung
    Mostafa, Reham R.
    Sakr, Rasha H.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (02): : 2477 - 2495
  • [46] Centroid Selection in Kernel Extreme Learning Machine using K-means
    Singhal, Mona
    Shukla, Sanyam
    2018 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN), 2018, : 708 - 711
  • [47] Cancer detection and segmentation using machine learning and deep learning techniques: a review
    Rai, Hari Mohan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 27001 - 27035
  • [48] Segmentation and Identification of Vertebrae in CT Scans Using CNN, k-Means Clustering and k-NN
    Altini, Nicola
    De Giosa, Giuseppe
    Fragasso, Nicola
    Coscia, Claudia
    Sibilano, Elena
    Prencipe, Berardino
    Hussain, Sardar Mehboob
    Brunetti, Antonio
    Buongiorno, Domenico
    Guerriero, Andrea
    Tato, Ilaria Sabina
    Brunetti, Gioacchino
    Triggiani, Vito
    Bevilacqua, Vitoantonio
    INFORMATICS-BASEL, 2021, 8 (02):
  • [49] BINARIZATION OF HISTORICAL DOCUMENTS USING SELF-LEARNING CLASSIFIER BASED ON K-MEANS AND SVM
    Djema, Amina
    Chibani, Youcef
    2013 PROCEEDINGS OF THE 21ST EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2013,
  • [50] DEEP LEARNING FOR SKIN CANCER DIAGNOSIS WITH HIERARCHICAL ARCHITECTURES
    Barata, Catarina
    Marques, Jorge S.
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 841 - 845