Multiple zeta functions at regular integer points

被引:0
作者
Shinohara, Takeshi [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Nagoya 4648602, Japan
关键词
multiple zeta function; quasi-shuffle product (harmonic product); Hopf algebra; ANALYTIC CONTINUATION; VALUES; RENORMALIZATION;
D O I
10.4064/aa221130-22-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show recurrence relations for Euler-Zagier multiple zeta functions which describe the r -fold function with one variable specialized to a non -positive integer as a rational linear combination of (r - 1) -fold functions, extending the previous results of Akiyama-Egami-Tanigawa and Matsumoto. As an application, we obtain an explicit method to calculate the special values of the multiple zeta function at any integer points (the arguments could be neither all -positive nor all -non -positive) as a rational linear combination of multiple zeta values.
引用
收藏
页码:295 / 324
页数:30
相关论文
共 20 条
[11]  
Kamano Ken., 2006, TOKYO J MATH, V29, P61, DOI DOI 10.3836/TJM/1166661867
[12]   AN INTEGRAL REPRESENTATION OF MULTIPLE HURWITZ-LERCH ZETA FUNCTIONS AND GENERALIZED MULTIPLE BERNOULLI NUMBERS [J].
Komori, Yasushi .
QUARTERLY JOURNAL OF MATHEMATICS, 2010, 61 (04) :437-496
[13]   Nested Sums of Symbols and Renormalized Multiple Zeta Values [J].
Manchon, Dominique ;
Paycha, Sylvie .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (24) :4628-4697
[14]  
Matsumoto K, 2002, NUMBER THEORY FOR THE MILLENNIUM II, P417
[15]   Laurent series expansions of multiple zeta-functions of Euler-Zagier type at integer points [J].
Matsumoto, Kohji ;
Onozuka, Tomokazu ;
Wakabayashi, Isao .
MATHEMATISCHE ZEITSCHRIFT, 2020, 295 (1-2) :623-642
[16]   ANALYTIC CONTINUATION OF MULTIPLE ZETA-FUNCTIONS AND THE ASYMPTOTIC BEHAVIOR AT NON-POSITIVE INTEGERS [J].
Onozuka, Tomokazu .
FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2013, 49 (02) :331-348
[17]   Multiple Stieltjes constants and Laurent type expansion of the multiple zeta functions at integer points [J].
Saha, Biswajyoti .
SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (01)
[18]   Multiple zeta values for coordinatewise limits at non-positive integers [J].
Sasaki, Yoshitaka .
ACTA ARITHMETICA, 2009, 136 (04) :299-317
[19]  
Zhao J., 2016, Multiple zeta functions, multiple polylogarithms and their special values
[20]   Analytic continuation of multiple zeta functions [J].
Zhao, JQ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (05) :1275-1283