New stability result for bresse system with dual-phase-lag thermoelasticity

被引:0
作者
Bouraoui, Hamed Abderrahmane [1 ]
Djebabla, Abdelhak [2 ]
El Arwadi, Toufic [3 ]
机构
[1] Badji Mokhtar Univ, Numer Anal Optimizat & Stat Lab, Annaba, Algeria
[2] Badji Mokhtar Univ, Lab Math Dynam & Modelizat, Annaba, Algeria
[3] Beirut Arab Univ, Fac Sci, Dept Math & Comp Sci, Debbieh, Lebanon
关键词
Stability; bresse system; energy method; thermoelasticity; dual-phase-lag; ASYMPTOTIC STABILITY; DECAY;
D O I
10.1080/00036811.2024.2332400
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is devoted to the study of the time decay of the one-dimensional thermoelastic Bresse system where the dual-phase-lag heat conduction theory is used to model the heat transfer. In this theory, two relaxation parameters tau(q) and tau(theta) are proposed. By using the multplier method, we prove that the system is dissipative if 2 tau(theta )> tau(q) and exponentially stable by introducing a new stability number chi(1). This result substantially improves earlier results in the literature.
引用
收藏
页码:3049 / 3066
页数:18
相关论文
共 24 条
  • [1] On the exponential and polynomial stability for a linear Bresse system
    Afilal, M.
    Guesmia, A.
    Soufiyane, A.
    Zahri, M.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (05) : 2626 - 2645
  • [2] Decay rates of the solution of the Cauchy thermoelastic Bresse system
    Afilal, Mounir
    Merabtene, Tarek
    Rhofir, Karim
    Soufyane, Abdelaziz
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (05):
  • [3] Asymptotic behavior of weakly dissipative Bresse-Timoshenko system on influence of the second spectrum of frequency
    Almeida Junior, D. S.
    Ramos, A. J. A.
    Santos, M. L.
    Gutemberg, L. R. M.
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2018, 98 (08): : 1320 - 1333
  • [4] Uniform stability of a non-autonomous semilinear Bresse system with memory
    Araújo R.O.
    Marinho S.S.
    Prates Filho J.S.
    [J]. Applied Mathematics and Computation, 2021, 387
  • [5] Thermoelastic Bresse system with dual-phase-lag model
    Bazarra, Noelia
    Bochicchio, Ivana
    Fernandez, Jose R.
    Naso, Maria Grazia
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (03):
  • [6] Bresse JAC, 1959, COURS MECANIQUE APPL
  • [7] CATTANEO C, 1958, CR HEBD ACAD SCI, V247, P431
  • [8] GENERAL CONDITION FOR EXPONENTIAL STABILITY OF THERMOELASTIC BRESSE SYSTEMS WITH CATTANEO'S LAW
    de Lima, Pedro Roberto
    Fernandez Sare, Hugo D.
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (07) : 3575 - 3596
  • [9] Stability of thermoelastic Bresse systems
    de Lima, Pedro Roberto
    Fernandez Sare, Hugo D.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (01):
  • [10] Asymptotic stability of thermoelastic systems of Bresse type
    Dell'Oro, Filippo
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (11) : 3902 - 3927