A lightweight mini-batch federated learning approach for attack detection in IoT

被引:6
作者
Ahmad, Mir Shahnawaz [1 ,2 ]
Shah, Shahid Mehraj [1 ]
机构
[1] NIT Srinagar, Dept Elect & Commun Engn, Commun Control & Learning Lab, Srinagar, J&K, India
[2] Madhav Inst Sci & Technol, Gwalior, MP, India
关键词
IoT; Network attacks; AI models; Deep learning; Federated learning; Attack detection; INTRUSION DETECTION; INTERNET;
D O I
10.1016/j.iot.2024.101088
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Internet of Things (IoT) has recently gained importance in many fields. The use of IoT in different fields leads to an increase in a wide variety of network attacks. Many researchers have used artificial intelligence (AI) based approaches like machine learning and deep learning techniques to detect such attacks. Traditionally these AI techniques train an intelligent model at a cloud data center using the IoT network data gathered by different IoT devices. The sharing of IoT data with the cloud data center may affect the privacy of the user's sensitive data. The federated learning techniques can be used to generate an effective attack detection AI model that preserve the privacy of IoT users, but these mechanisms have higher computational complexities and require large number of federation rounds. So, to detect such attacks without compromising the privacy of IoT users, we propose a lightweight mini-batch federated learning mechanism, which is computationally efficient and requires minimum number of federation rounds to detect malicious attacks in an IoT network. The performance of the proposed mechanism was tested on benchmark IoT network datasets and the results show that the proposed mechanism achieves an overall attack detection accuracy of 98.85% with a false alarm rate of 0.09% and requires minimal computational resources.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] A Heterogeneity-Aware Semi-Decentralized Model for a Lightweight Intrusion Detection System for IoT Networks Based on Federated Learning and BiLSTM
    Alsaleh, Shuroog
    Menai, Mohamed El Bachir
    Al-Ahmadi, Saad
    SENSORS, 2025, 25 (04)
  • [42] FLAD: Adaptive Federated Learning for DDoS attack detection
    Doriguzzi-Corin, Roberto
    Siracusa, Domenico
    COMPUTERS & SECURITY, 2024, 137
  • [43] Federated Deep Learning for Intrusion Detection in IoT Networks
    Belarbi, Othmane
    Spyridopoulos, Theodoros
    Anthi, Eirini
    Mavromatis, Ioannis
    Carnelli, Pietro
    Khan, Aftab
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 237 - 242
  • [44] Explainable Federated Learning for Botnet Detection in IoT Networks
    Kalakoti, Rajesh
    Bahsi, Hayretdin
    Nomm, Sven
    2024 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE, CSR, 2024, : 22 - 29
  • [45] Anomaly Detection of IoT Cyberattacks in Smart Cities Using Federated Learning and Split Learning
    Priyadarshini, Ishaani
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (03)
  • [46] An amalgamated correlation and regression based feature selection with ensemble learning approach for IoT network attack detection
    Ahmad, Mir Shahnawaz
    Shah, Shahid Mehraj
    INTERNET TECHNOLOGY LETTERS, 2024, 7 (06)
  • [47] CoCFL: A Lightweight Blockchain-based Federated Learning Framework in IoT Context
    Wang, Jianrong
    Shi, Yang
    Hu, Dengcheng
    Li, Keqiu
    Liu, Xiulong
    2024 IEEE 44TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS, ICDCS 2024, 2024, : 1086 - 1096
  • [48] Federated Learning-Based Model to Lightweight IDSs for Heterogeneous IoT Networks: State-of-the-Art, Challenges, and Future Directions
    Alsaleh, Shuroog S.
    Menai, Mohamed El Bachir
    Al-Ahmadi, Saad
    IEEE ACCESS, 2024, 12 : 134256 - 134272
  • [49] Lightweight Federated-Learning-Driven Traffic Prediction for Heterogeneous IoT Networks
    Wang, Ying
    Zhang, Qianqian
    Wei, Tongyan
    Cong, Lin
    Yu, Peng
    Guo, Shaoyong
    Qiu, Xuesong
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (24): : 40656 - 40669
  • [50] Lightweight Privacy and Security Computing for Blockchained Federated Learning in IoT
    Fan, Mochan
    Ji, Kailai
    Zhang, Zhaofeng
    Yu, Hongfang
    Sun, Gang
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (18) : 16048 - 16060