A lightweight mini-batch federated learning approach for attack detection in IoT

被引:6
作者
Ahmad, Mir Shahnawaz [1 ,2 ]
Shah, Shahid Mehraj [1 ]
机构
[1] NIT Srinagar, Dept Elect & Commun Engn, Commun Control & Learning Lab, Srinagar, J&K, India
[2] Madhav Inst Sci & Technol, Gwalior, MP, India
关键词
IoT; Network attacks; AI models; Deep learning; Federated learning; Attack detection; INTRUSION DETECTION; INTERNET;
D O I
10.1016/j.iot.2024.101088
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Internet of Things (IoT) has recently gained importance in many fields. The use of IoT in different fields leads to an increase in a wide variety of network attacks. Many researchers have used artificial intelligence (AI) based approaches like machine learning and deep learning techniques to detect such attacks. Traditionally these AI techniques train an intelligent model at a cloud data center using the IoT network data gathered by different IoT devices. The sharing of IoT data with the cloud data center may affect the privacy of the user's sensitive data. The federated learning techniques can be used to generate an effective attack detection AI model that preserve the privacy of IoT users, but these mechanisms have higher computational complexities and require large number of federation rounds. So, to detect such attacks without compromising the privacy of IoT users, we propose a lightweight mini-batch federated learning mechanism, which is computationally efficient and requires minimum number of federation rounds to detect malicious attacks in an IoT network. The performance of the proposed mechanism was tested on benchmark IoT network datasets and the results show that the proposed mechanism achieves an overall attack detection accuracy of 98.85% with a false alarm rate of 0.09% and requires minimal computational resources.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Mini-batch sample selection strategies for deep learning based speech recognition
    Dokuz, Yesim
    Tufekci, Zekeriya
    APPLIED ACOUSTICS, 2021, 171
  • [32] Secure and Efficient Federated Learning for Robust Intrusion Detection in IoT Networks
    Abou El Houda, Zakaria
    Moudoud, Hajar
    Khoukhi, Lyes
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 2668 - 2673
  • [33] IoT Attack Detection and Mitigation with Optimized Deep Learning Techniques
    Brindha Devi, V.
    Ranjan, Nihar M.
    Sharma, Himanshu
    CYBERNETICS AND SYSTEMS, 2024, 55 (07) : 1702 - 1728
  • [34] PoAh-Enabled Federated Learning Architecture for DDoS Attack Detection in IoT Networks
    Park, Jin Ho
    Yotxay, Sangthong
    Singh, Sushil Kumar
    Park, Jong Hyuk
    HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2024, 14 : 1 - 24
  • [35] SIDS: A federated learning approach for intrusion detection in IoT using Social Internet of Things
    Amiri-Zarandi, Mohammad
    Dara, Rozita A.
    Lin, Xiaodong
    COMPUTER NETWORKS, 2023, 236
  • [36] Attack Detection in IoT using Machine Learning
    Anwer, Maryam
    Khan, Shariq Mahmood
    Farooq, Muhammad Umer
    Waseemullah
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2021, 11 (03) : 7273 - 7278
  • [37] Lightweight Model for Botnet Attack Detection in Software Defined Network-Orchestrated IoT
    Negera, Worku Gachena
    Schwenker, Friedhelm
    Debelee, Taye Girma
    Melaku, Henock Mulugeta
    Feyisa, Degaga Wolde
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [38] A Novel Federated Edge Learning Approach for Detecting Cyberattacks in IoT Infrastructures
    Abbas, Sidra
    Al Hejaili, Abdullah
    Sampedro, Gabriel Avelino
    Abisado, Mideth
    Almadhor, Ahmad S.
    Shahzad, Tariq
    Ouahada, Khmaies
    IEEE ACCESS, 2023, 11 : 112189 - 112198
  • [39] Deep Transfer Learning for IoT Attack Detection
    Vu, Ly
    Quang Uy Nguyen
    Nguyen, Diep N.
    Dinh Thai Hoang
    Dutkiewicz, Eryk
    IEEE ACCESS, 2020, 8 : 107335 - 107344
  • [40] Detecting Zero-day Attack with Federated Learning using Autonomously Extracted Anomalies in IoT
    Ohtani, Takahiro
    Yamamoto, Ryo
    Ohzahata, Satoshi
    2024 IEEE 21ST CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC, 2024, : 356 - 359