A lightweight mini-batch federated learning approach for attack detection in IoT

被引:6
|
作者
Ahmad, Mir Shahnawaz [1 ,2 ]
Shah, Shahid Mehraj [1 ]
机构
[1] NIT Srinagar, Dept Elect & Commun Engn, Commun Control & Learning Lab, Srinagar, J&K, India
[2] Madhav Inst Sci & Technol, Gwalior, MP, India
关键词
IoT; Network attacks; AI models; Deep learning; Federated learning; Attack detection; INTRUSION DETECTION; INTERNET;
D O I
10.1016/j.iot.2024.101088
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Internet of Things (IoT) has recently gained importance in many fields. The use of IoT in different fields leads to an increase in a wide variety of network attacks. Many researchers have used artificial intelligence (AI) based approaches like machine learning and deep learning techniques to detect such attacks. Traditionally these AI techniques train an intelligent model at a cloud data center using the IoT network data gathered by different IoT devices. The sharing of IoT data with the cloud data center may affect the privacy of the user's sensitive data. The federated learning techniques can be used to generate an effective attack detection AI model that preserve the privacy of IoT users, but these mechanisms have higher computational complexities and require large number of federation rounds. So, to detect such attacks without compromising the privacy of IoT users, we propose a lightweight mini-batch federated learning mechanism, which is computationally efficient and requires minimum number of federation rounds to detect malicious attacks in an IoT network. The performance of the proposed mechanism was tested on benchmark IoT network datasets and the results show that the proposed mechanism achieves an overall attack detection accuracy of 98.85% with a false alarm rate of 0.09% and requires minimal computational resources.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] IoT Malicious Traffic Detection Based on Federated Learning
    Shen, Yi
    Zhang, Yuhan
    Li, Yuwei
    Ding, Wanmeng
    Hu, Miao
    Li, Yang
    Huang, Cheng
    Wang, Jie
    DIGITAL FORENSICS AND CYBER CRIME, PT 1, ICDF2C 2023, 2024, 570 : 249 - 263
  • [22] Federated Learning for IoT Intrusion Detection
    Lazzarini, Riccardo
    Tianfield, Huaglory
    Charissis, Vassilis
    AI, 2023, 4 (03) : 509 - 530
  • [23] Two-Stage Clustering for Federated Learning with Pseudo Mini-batch SGD Training on Non-IID Data
    Weng, Jianqing
    Su, Songzhi
    Fan, Xiaoliang
    COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING, CHINESECSCW 2021, PT I, 2022, 1491 : 29 - 43
  • [24] SIM-FED: Secure IoT malware detection model with federated learning
    Nobakht, Mehrnoosh
    Javidan, Reza
    Pourebrahimi, Alireza
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 116
  • [25] A Secure and Privacy Preserving Federated Learning Approach for IoT Intrusion Detection System
    Phan The Duy
    Huynh Nhat Hao
    Huynh Minh Chu
    Van-Hau Pham
    NETWORK AND SYSTEM SECURITY, NSS 2021, 2021, 13041 : 353 - 368
  • [26] Deep-Learning-Based Approach for IoT Attack and Malware Detection
    Tasci, Burak
    APPLIED SCIENCES-BASEL, 2024, 14 (18):
  • [27] Sample-Based and Feature-Based Federated Learning for Unconstrained and Constrained Nonconvex Optimization via Mini-batch SSCA
    Cui, Ying
    Li, Yangchen
    Ye, Chencheng
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 3832 - 3847
  • [28] An Ensemble Multi-View Federated Learning Intrusion Detection for IoT
    Attota, Dinesh Chowdary
    Mothukuri, Viraaji
    Parizi, Reza M.
    Pouriyeh, Seyedamin
    IEEE ACCESS, 2021, 9 : 117734 - 117745
  • [29] A Novel Federated Learning Based Intrusion Detection System for IoT Networks
    Benameur, Rabaie
    Dahane, Amine
    Souihi, Sami
    Mellouk, Abdelhamid
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 2402 - 2407
  • [30] Federated transfer learning for intrusion detection system in industrial iot 4.0
    Malathy, N.
    Kumar, Shree Harish G.
    Sriram, R.
    Raj, Jebocen Immanuel N. R.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (19) : 57913 - 57941