Learn to Unlearn: Insights Into Machine Unlearning

被引:4
作者
Qu, Youyang [1 ]
Yuan, Xin [1 ]
Ding, Ming [1 ]
Ni, Wei [1 ]
Rakotoarivelo, Thierry [1 ]
Smith, David [1 ]
机构
[1] Data61, Sydney, NSW, Australia
关键词
Privacy; Reviews; Machine learning; Resilience; ATTACKS; FORGET;
D O I
10.1109/MC.2023.3333319
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents a comprehensive review of recent machine unlearning techniques, verification mechanisms, and potential attacks. We highlight emerging challenges and prospective research directions, aiming to provide valuable resources for integrating privacy, equity, and resilience into machine learning systems and help them "learn to unlearn."
引用
收藏
页码:79 / 90
页数:12
相关论文
共 9 条
  • [1] Bourtoule L, 2021, P IEEE S SECUR PRIV, P141, DOI 10.1109/SP40001.2021.00019
  • [2] Brophy J., 2021, P 38 INT C MACH LEAR, P1092
  • [3] Towards Making Systems Forget with Machine Unlearning
    Cao, Yinzhi
    Yang, Junfeng
    [J]. 2015 IEEE SYMPOSIUM ON SECURITY AND PRIVACY SP 2015, 2015, : 463 - 480
  • [4] When Machine Unlearning Jeopardizes Privacy
    Chen, Min
    Zhang, Zhikun
    Wang, Tianhao
    Backes, Michael
    Humbert, Mathias
    Zhang, Yang
    [J]. CCS '21: PROCEEDINGS OF THE 2021 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2021, : 896 - 911
  • [5] Ginart AA, 2019, ADV NEUR IN, V32
  • [6] Golatkar A, 2020, PROC CVPR IEEE, P9301, DOI 10.1109/CVPR42600.2020.00932
  • [7] Marchant NG, 2022, AAAI CONF ARTIF INTE, P7691
  • [8] Mittal P., 2022, Proceedings on Privacy Enhancing Technologies, V3, P268
  • [9] Membership Inference Attacks Against Machine Learning Models
    Shokri, Reza
    Stronati, Marco
    Song, Congzheng
    Shmatikov, Vitaly
    [J]. 2017 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP), 2017, : 3 - 18