Global existence and decay rates of solutions to the Oldroyd-B model with stress tensor diffusion

被引:2
作者
Huang, Jinrui [1 ]
Liu, Qiao [2 ]
Zi, Ruizhao [3 ,4 ]
机构
[1] Wuyi Univ, Sch Math & Computat Sci, Jiangmen 529020, Peoples R China
[2] Cent South Univ, Sch Math & Stat, HNP, LAMA, Changsha 410083, Hunan, Peoples R China
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[4] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Oldroyd-B model; Cauchy problem; Decay rates; NAVIER-STOKES EQUATIONS; VISCOELASTIC FLUIDS; WELL-POSEDNESS; DILUTE;
D O I
10.1016/j.jde.2024.01.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the Oldroyd-B model with stress tensor diffusion in R-d with d > 2. We first establish the global well-posedness of solutions to this model for small initial data (u(0), tau(0)) is an element of (Bp-1 (d /p-1) boolean AND B-p ,1(d /p+1) ) (d)x (B( p, 1 )d/p)(d xd ) with 1 <= p < infinity. Furthermore, under some additional L-2 type conditions on (u(0), tau(0)), but without any more smallness restrictions, we get the L-2 decay rates of all derivatives of (u, tau). It is shown that the velocity u decays as fast as the solution to the corresponding homogeneous linear heat equation, and the symmetry tau decays as fast as Du. In particular, when d = 3 the velocity u admits the decay rate faster than (1 + t)(-3/4) in L-2 (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页码:38 / 89
页数:52
相关论文
共 42 条
[1]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7
[2]   Existence of global weak solutions to the kinetic Hookean dumbbell model for incompressible dilute polymeric fluids [J].
Barrett, John W. ;
Suli, Endre .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 39 :362-395
[3]   A CONSTITUTIVE EQUATION FOR LIQUID-CRYSTALLINE POLYMER-SOLUTIONS [J].
BHAVE, AV ;
MENON, RK ;
ARMSTRONG, RC ;
BROWN, RA .
JOURNAL OF RHEOLOGY, 1993, 37 (03) :413-441
[4]   KINETIC-THEORY AND RHEOLOGY OF DILUTE, NONHOMOGENEOUS POLYMER-SOLUTIONS [J].
BHAVE, AV ;
ARMSTRONG, RC ;
BROWN, RA .
JOURNAL OF CHEMICAL PHYSICS, 1991, 95 (04) :2988-3000
[5]   Vanishing Viscosity Limit for Incompressible Viscoelasticity in Two Dimensions [J].
Cai, Yuan ;
Lei, Zhen ;
Lin, Fanghua ;
Masmoudi, Nader .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (10) :2063-2120
[6]   A Global Existence Result for the Compressible Navier-Stokes Equations in the Critical Lp Framework [J].
Charve, Frederic ;
Danchin, Raphael .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (01) :233-271
[7]   About lifespan of regular solutions of equations related to viscoelastic fluids [J].
Chemin, JY ;
Masmoudi, N .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (01) :84-112
[8]   Global well-posedness of viscoelastic fluids of Oldroyd type in Besov spaces [J].
Chen, Qionglei ;
Miao, Changxing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (07) :1928-1939
[9]   Global Well-Posedness in the Critical Besov Spaces for the Incompressible Oldroyd-B Model Without Damping Mechanism [J].
Chen, Qionglei ;
Hao, Xiaonan .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2019, 21 (03)
[10]  
Chen QL, 2010, COMMUN PUR APPL MATH, V63, P1173