Lithium gallium oxide (LiGaO2): High-performance anode material for lithium-ion batteries

被引:1
作者
Ma, Fukun [1 ]
Guan, Shengjing [3 ]
Wang, Yan-Jie [1 ]
Liu, Zhimeng [1 ]
Li, Wenfang [2 ]
机构
[1] Dongguan Univ Technol, Sch Mat Sci & Engn, Dept New Energy Mat, New Energy & Adv Funct Mat Grp, Dongguan 523808, Guangdong, Peoples R China
[2] Dongguan Univ Technol, Sch Mat Sci & Engn, Dept Met Mat, Dongguan 523808, Guangdong, Peoples R China
[3] Shandong Univ Technol, Sch Chem & Chem Engn, Zibo 255049, Shandong, Peoples R China
关键词
LiGaO2; Lithiation strategy; Ex situ analysis; Lithium-ion batteries; GRAPHENE-OXIDE; ASSISTED SYNTHESIS; NANOSHEETS; CARBON; STORAGE; MOS2;
D O I
10.1016/j.jallcom.2023.173197
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of novel anodes is an effective method to improve advanced energy storage devices. In this work, a simple and easily scalable strategy is adopted to construct lithium gallium oxide (LiGaO2) via a facile solid-state reaction method. However, there are few reports on LiGaO2 for lithium-ion battery anodes. The welldesigned LiGaO2 fabricated in this work is polycrystalline with a regular polygon shape consisting of fine particles. The lithiation strategy increases the electronic conductivity of LiGaO2 without further carbon coating. After 200 cycles at 0.1 A g-1, the LiGaO2 anode displays good reversible capacity. After 1000 cycles at 3.0 A g-1, the capacity retention is 253.3 mA h g-1. Electrochemical results show that this lithiation strategy can accelerate lithium-ion diffusion and charge transfer kinetics of the LiGaO2 anode and alleviate the pulverization of the electrochemical reaction. The ex situ XRD result confirms the good structural stability of the LiGaO2 anode. This study demonstrates the necessity of developing new anode materials with good cycling stability via this lithiation strategy.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Hollow MoS2/rGO composites as high-performance anode materials for lithium-ion batteries
    Xue, Haoliang
    Jiao, Qingze
    Du, Jinyu
    Wang, Shanshan
    Feng, Caihong
    Wu, Qin
    Li, Hansheng
    Lu, Qinliang
    Shi, Daxin
    Zhao, Yun
    IONICS, 2019, 25 (10) : 4659 - 4666
  • [2] Lithium Germanate (Li2GeO3): A High-Performance Anode Material for Lithium-Ion Batteries
    Rahman, Md Mokhlesur
    Sultana, Irin
    Yang, Tianyu
    Chen, Zhiqiang
    Sharma, Neeraj
    Glushenkov, Alexey M.
    Chen, Ying
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (52) : 16059 - 16063
  • [3] MnO2/Carbon Nanofibers Material as High-Performance Anode for Lithium-Ion Batteries
    Ma, Dandan
    Mu, Xin
    Zhao, Guiqing
    Qin, Xiangge
    Qi, Meili
    COATINGS, 2023, 13 (04)
  • [4] Graphene oxide wrapped Fe2O3 as a durable anode material for high-performance lithium-ion batteries
    Li, Henan
    Zhu, Xiaofei
    Sitinamaluwa, Hansinee
    Wasalathilake, Kimal
    Xu, Li
    Zhang, Shanqing
    Yan, Cheng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 714 : 425 - 432
  • [5] CNT@TiO2 nanohybrids for high-performance anode of lithium-ion batteries
    Wen, Zhenhai
    Ci, Suqin
    Mao, Shun
    Cui, Shumao
    He, Zhen
    Chen, Junhong
    NANOSCALE RESEARCH LETTERS, 2013, 8 : 1 - 6
  • [6] TiO2 nanotubes wrapped with reduced graphene oxide as a high-performance anode material for lithium-ion batteries
    Zheng, Peng
    Liu, Ting
    Su, Ying
    Zhang, Lifeng
    Guo, Shouwu
    SCIENTIFIC REPORTS, 2016, 6
  • [7] Developing WO3 as high-performance anode material for lithium-ion batteries
    Xiao, Ying
    Jiang, Minxia
    Cao, Minhua
    MATERIALS LETTERS, 2021, 285
  • [8] Embedding amorphous lithium vanadate into carbon nanofibers by electrospinning as a high-performance anode material for lithium-ion batteries
    Liu, Ting
    Yao, Tianhao
    Li, Li
    Zhu, Lei
    Wang, Jinkai
    Li, Fang
    Wang, Hongkang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 580 : 21 - 29
  • [9] Indium Phosphide/Reduced Graphene Oxide Composites as High-Performance Anodes in Lithium-Ion Batteries
    Liu, Shuling
    Wei, Wei
    He, Xiaodong
    CHEMELECTROCHEM, 2018, 5 (21): : 3315 - 3322
  • [10] Twisted carbonaceous nanoribbons as high-performance anode material for lithium-ion batteries
    Wang, Hao-Ran
    Cai, Wen-Jun
    Yang, Yong-Gang
    Li, Yi
    JOURNAL OF NANOPARTICLE RESEARCH, 2019, 21 (03)