Learning to Estimate Multivariate Uncertainty in Deep Pedestrian Trajectory Prediction

被引:0
|
作者
Castro, Augusto R. [1 ]
Grassi, Valdir, Jr. [1 ]
机构
[1] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Elect & Comp Engn, Sao Carlos, SP, Brazil
来源
2023 LATIN AMERICAN ROBOTICS SYMPOSIUM, LARS, 2023 BRAZILIAN SYMPOSIUM ON ROBOTICS, SBR, AND 2023 WORKSHOP ON ROBOTICS IN EDUCATION, WRE | 2023年
基金
巴西圣保罗研究基金会;
关键词
deep learning; uncertainty estimation; trajectory prediction; autonomous vehicles;
D O I
10.1109/LARS/SBR/WRE59448.2023.10333011
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the advent of autonomous vehicles (AVs), it is mandatory to care for pedestrians' integrity, as they are one of the most vulnerable entities in transit. Therefore, the AVs must anticipate their actions and predict their trajectories to improve tasks such as active perception, predictive path planning, predictive control, and human-robot interaction. The literature presents deep learning methods to predict pedestrian trajectories from the perspective of an onboard camera. However, only one study modeled the uncertainties involved in the model prediction. Thus, we address the problem by proposing a method to model both aleatoric and epistemic multivariate uncertainties in deep pedestrian trajectory prediction. We are the first to model the multivariate predictive uncertainty in pedestrian trajectory prediction by incorporating mathematical conditions to ensure stability during training. Our methodology can be applied to any deterministic method with minimal adjustments and present more accurate results than the BayesianLSTM.
引用
收藏
页码:415 / 420
页数:6
相关论文
共 50 条
  • [1] A Review of Deep Learning-Based Methods for Pedestrian Trajectory Prediction
    Sighencea, Bogdan Ilie
    Stanciu, Rarea Ion
    Caleanu, Catalin Daniel
    SENSORS, 2021, 21 (22)
  • [2] Survey of pedestrian trajectory prediction methods based on deep learning
    Kong W.
    Liu Y.
    Li H.
    Wang C.-X.
    Cui X.-H.
    Kongzhi yu Juece/Control and Decision, 2021, 36 (12): : 2841 - 2850
  • [3] A novel model based on deep learning for Pedestrian detection and Trajectory prediction
    Shi, Keke
    Zhu, Yaping
    Pan, Hong
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 592 - 598
  • [4] Review of Pedestrian Trajectory Prediction Methods: Comparing Deep Learning and Knowledge-Based Approaches
    Korbmacher, Raphael
    Tordeux, Antoine
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 24126 - 24144
  • [5] Pedestrian Motion Trajectory Prediction With Stereo-Based 3D Deep Pose Estimation and Trajectory Learning
    Zhong, Jianqi
    Sun, Hao
    Cao, Wenming
    He, Zhihai
    IEEE ACCESS, 2020, 8 : 23480 - 23486
  • [6] Multivariate Uncertainty in Deep Learning
    Russell, Rebecca L.
    Reale, Christopher
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (12) : 7937 - 7943
  • [7] A Survey of Deep Learning-Based Pedestrian Trajectory Prediction: Challenges and Solutions
    Jiang, Jiaming
    Yan, Kai
    Xia, Xindong
    Yang, Biao
    SENSORS, 2025, 25 (03)
  • [8] Uncertainty Aware Deep Learning for Fault Prediction Using Multivariate Time Series Signals
    Rahman, Md Monibor
    Vidyaratne, L.
    Carpenter, A.
    Tennant, C.
    Iftekharuddin, K.
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [9] Pedestrian Trajectory Prediction Combining Probabilistic Reasoning and Sequence Learning
    Li, Yang
    Lu, Xiao-Yun
    Wang, Jianqiang
    Li, Keqiang
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2020, 5 (03): : 461 - 474
  • [10] Flood Prediction and Uncertainty Estimation Using Deep Learning
    Gude, Vinayaka
    Corns, Steven
    Long, Suzanna
    WATER, 2020, 12 (03)