Yeast cell detection using fuzzy automatic contrast enhancement (FACE) and you only look once (YOLO)

被引:8
作者
Huang, Zheng-Jie [1 ]
Patel, Brijesh [1 ]
Lu, Wei-Hao [1 ]
Yang, Tz-Yu [1 ]
Tung, Wei-Cheng [1 ]
Bucinskas, Vytautas [2 ]
Greitans, Modris [3 ]
Wu, Yu-Wei [4 ,5 ,6 ]
Lin, Po Ting [1 ,7 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Mech Engn, Taipei 10607, Taiwan
[2] Vilnius Gediminas Tech Univ, LT-10223 Vilnius, Lithuania
[3] Inst Elect & Comp Sci, LV-1006 Riga, Latvia
[4] Taipei Med Univ, Grad Inst Biomed Informat, Coll Med Sci & Technol, Taipei 11031, Taiwan
[5] Taipei Med Univ Hosp, Clin Big Data Res Ctr, Taipei 11031, Taiwan
[6] Taipei Med Univ, TMU Res Ctr Digest Med, Taipei 11031, Taiwan
[7] Natl Taiwan Univ Sci & Technol, Intelligent Mfg Innovat Ctr, Taipei 10607, Taiwan
关键词
ADAPTIVE HISTOGRAM EQUALIZATION; SEGMENTATION;
D O I
10.1038/s41598-023-43452-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In contemporary biomedical research, the accurate automatic detection of cells within intricate microscopic imagery stands as a cornerstone for scientific advancement. Leveraging state-of-the-art deep learning techniques, this study introduces a novel amalgamation of Fuzzy Automatic Contrast Enhancement (FACE) and the You Only Look Once (YOLO) framework to address this critical challenge of automatic cell detection. Yeast cells, representing a vital component of the fungi family, hold profound significance in elucidating the intricacies of eukaryotic cells and human biology. The proposed methodology introduces a paradigm shift in cell detection by optimizing image contrast through optimal fuzzy clustering within the FACE approach. This advancement mitigates the shortcomings of conventional contrast enhancement techniques, minimizing artifacts and suboptimal outcomes. Further enhancing contrast, a universal contrast enhancement variable is ingeniously introduced, enriching image clarity with automatic precision. Experimental validation encompasses a diverse range of yeast cell images subjected to rigorous quantitative assessment via Root-Mean-Square Contrast and Root-Mean-Square Deviation (RMSD). Comparative analyses against conventional enhancement methods showcase the superior performance of the FACE-enhanced images. Notably, the integration of the innovative You Only Look Once (YOLOv5) facilitates automatic cell detection within a finely partitioned grid system. This leads to the development of two models-one operating on pristine raw images, the other harnessing the enriched landscape of FACE-enhanced imagery. Strikingly, the FACE enhancement achieves exceptional accuracy in automatic yeast cell detection by YOLOv5 across both raw and enhanced images. Comprehensive performance evaluations encompassing tenfold accuracy assessments and confidence scoring substantiate the robustness of the FACE-YOLO model. Notably, the integration of FACE-enhanced images serves as a catalyst, significantly elevating the performance of YOLOv5 detection. Complementing these efforts, OpenCV lends computational acumen to delineate precise yeast cell contours and coordinates, augmenting the precision of cell detection.
引用
收藏
页数:16
相关论文
共 46 条
[1]   A dynamic histogram equalization for image contrast enhancement [J].
Abdullah-Al-Wadud, M. ;
Kabir, Md. Hasanul ;
Dewan, M. Ali Akber ;
Chae, Oksam .
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2007, 53 (02) :593-600
[2]  
Alanazi Abdullah, 2022, Informatics in Medicine Unlocked, DOI 10.1016/j.imu.2022.100924
[3]  
[Anonymous], 2016 IEEE Conf. Comp. Vis. Patt. Recog. (CVPR)
[4]   FCM - THE FUZZY C-MEANS CLUSTERING-ALGORITHM [J].
BEZDEK, JC ;
EHRLICH, R ;
FULL, W .
COMPUTERS & GEOSCIENCES, 1984, 10 (2-3) :191-203
[5]   An active-contour based algorithm for the automated segmentation of dense yeast populations on transmission microscopy images [J].
Bredies, Kristian ;
Wolinski, Heimo .
COMPUTING AND VISUALIZATION IN SCIENCE, 2011, 14 (07) :341-352
[6]   Single-Shot Convolution Neural Networks for Real-Time Fruit Detection Within the Tree [J].
Bresilla, Kushtrim ;
Perulli, Giulio Demetrio ;
Boini, Alexandra ;
Morandi, Brunella ;
Grappadelli, Luca Corelli ;
Manfrini, Luigi .
FRONTIERS IN PLANT SCIENCE, 2019, 10
[7]   EFFICIENT IMPLEMENTATION OF THE FUZZY C-MEANS CLUSTERING ALGORITHMS [J].
CANNON, RL ;
DAVE, JV ;
BEZDEK, JC .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1986, 8 (02) :248-255
[8]   Quantum-enhanced nonlinear microscopy [J].
Casacio, Catxere A. ;
Madsen, Lars S. ;
Terrasson, Alex ;
Waleed, Muhammad ;
Barnscheidt, Kai ;
Hage, Boris ;
Taylor, Michael A. ;
Bowen, Warwick P. .
NATURE, 2021, 594 (7862) :201-+
[9]   Clearance and manufacturing errors' effects on the accuracy of the 3-RCC Spherical Parallel Manipulator [J].
Chaker, A. ;
Mika, A. ;
Laribi, M. A. ;
Romdhane, L. ;
Zeghloul, S. .
EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2013, 37 :86-95
[10]  
Community B.O., 2018, BLENDER A 3D MODELLI