CRISPR-Cas-based techniques for pathogen detection: Retrospect, recent advances, and future perspectives

被引:34
作者
Huang, Tao
Zhang, Rui [1 ]
Li, Jinming [1 ]
机构
[1] Chinese Acad Med Sci, Inst Geriatr Med, Beijing Hosp, Natl Ctr Clin Labs,Natl Ctr Gerontol, 1 Da HuaRoad, Beijing 100730, Peoples R China
基金
中国国家自然科学基金;
关键词
CRISPR-Cas; Pathogen detection; Point-of-care testing; Standardized testing; RECOMBINASE POLYMERASE AMPLIFICATION; ISOTHERMAL AMPLIFICATION; DNA; SARS-COV-2; PCR; ENDONUCLEASE; PERFORMANCE; TECHNOLOGY; CHALLENGES; BIOSENSOR;
D O I
10.1016/j.jare.2022.10.011
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Early detection of pathogen-associated diseases are critical for effective treatment. Rapid, specific, sensitive, and cost-effective diagnostic technologies continue to be challenging to develop. The current gold standard for pathogen detection, polymerase chain reaction technology, has limitations such as long operational cycles, high cost, and high technician and instrumentation requirements.Aim of review: This review examines and highlights the technical advancements of CRISPR-Cas in patho-gen detection and provides an outlook for future development, multi-application scenarios, and clinical translation.Key scientific concepts of review: Approaches enabling clinical detection of pathogen nucleic acids that are highly sensitive, specific, cheap, and portable are necessary. CRISPR-Cas9 specificity in targeting nucleic acids and "collateral cleavage" activity of CRISPR-Cas12/Cas13/Cas14 show significant promise in nucleic acid detection technology. These methods have a high specificity, versatility, and rapid detection cycle. In this paper, CRISPR-Cas-based detection methods are discussed in depth. Although CRISPR-Cas-mediated pathogen diagnostic solutions face challenges, their powerful capabilities will pave the way for ideal diagnostic tools.& COPY; 2023 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:69 / 82
页数:14
相关论文
共 142 条
  • [21] Challenges and opportunities for pathogen detection using DNA microarrays
    Call, DR
    [J]. CRITICAL REVIEWS IN MICROBIOLOGY, 2005, 31 (02) : 91 - 99
  • [22] Paper Device Combining CRISPR/Cas12a and Reverse-Transcription Loop-Mediated Isothermal Amplification for SARS-CoV-2 Detection in Wastewater
    Cao, Haorui
    Mao, Kang
    Ran, Fang
    Xu, Pengqi
    Zhao, Yirong
    Zhang, Xiangyan
    Zhou, Hourong
    Yang, Zhugen
    Zhang, Hua
    Jiang, Guibin
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2022, 56 (18) : 13245 - 13253
  • [23] Rapid detection of SARS-CoV-2 RNA in saliva via Cas13
    Chandrasekaran, Sita S.
    Agrawal, Shreeya
    Fanton, Alison
    Jangid, Aditya R.
    Charrez, Berenice
    Escajeda, Arturo M.
    Son, Sungmin
    Mcintosh, Roger
    Tran, Huyen
    Bhuiya, Abdul
    Derby, Maria Diaz de Leon
    Switz, Neil A.
    Armstrong, Maxim
    Harris, Andrew R.
    Prywes, Noam
    Lukarska, Maria
    Biering, Scott B.
    Smock, Dylan C. J.
    Mok, Amanda
    Knott, Gavin J.
    Dang, Qi
    Van Dis, Erik
    Dugan, Eli
    Kim, Shin
    Liu, Tina Y.
    Consortium, Igi Testing
    Moehle, Erica A.
    Kogut, Katherine
    Eskenazi, Brenda
    Harris, Eva
    Stanley, Sarah A.
    Lareau, Liana F.
    Tan, Ming X.
    Fletcher, Daniel A.
    Doudna, Jennifer A.
    Savage, David F.
    Hsu, Patrick D.
    [J]. NATURE BIOMEDICAL ENGINEERING, 2022, 6 (08) : 944 - +
  • [24] Colorimetric detection of nucleic acid sequences in plant pathogens based on CRISPR/Cas9 triggered signal amplification
    Chang, Weidan
    Liu, Weipeng
    Liu, Ying
    Zhan, Fangfang
    Chen, Huifang
    Lei, Hongtao
    Liu, Yingju
    [J]. MICROCHIMICA ACTA, 2019, 186 (04)
  • [25] Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System
    Chen, Baohui
    Gilbert, Luke A.
    Cimini, Beth A.
    Schnitzbauer, Joerg
    Zhang, Wei
    Li, Gene-Wei
    Park, Jason
    Blackburn, Elizabeth H.
    Weissman, Jonathan S.
    Qi, Lei S.
    Huang, Bo
    [J]. CELL, 2013, 155 (07) : 1479 - 1491
  • [26] Point-of-care CRISPR-Cas-assisted SARS-CoV-2 detection in an automated and portable droplet magnetofluidic device
    Chen, Fan-En
    Lee, Pei-Wei
    Trick, Alexander Y.
    Park, Joon Soo
    Chen, Liben
    Shah, Kushagra
    Mostafa, Heba
    Carroll, Karen C.
    Hsieh, Kuangwen
    Wang, Tza-Huei
    [J]. BIOSENSORS & BIOELECTRONICS, 2021, 190
  • [27] CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity
    Chen, Janice S.
    Ma, Enbo
    Harrington, Lucas B.
    Da Costa, Maria
    Tian, Xinran
    Palefsky, Joel M.
    Doudna, Jennifer A.
    [J]. SCIENCE, 2018, 360 (6387) : 436 - +
  • [28] Contamination-free visual detection of SARS-CoV-2 with CRISPR/Cas12a: A promising method in the point-of-care detection
    Chen, Yanju
    Shi, Ya
    Chen, Yin
    Yang, Zhangnv
    Wu, Hui
    Zhou, Zhihui
    Li, Jue
    Ping, Jianfeng
    He, Luping
    Shen, Hong
    Chen, Zhengxin
    Wu, Jian
    Yu, Yunsong
    Zhang, Yanjun
    Chen, Huan
    [J]. BIOSENSORS & BIOELECTRONICS, 2020, 169
  • [29] Nucleic acid amplification free biosensors for pathogen detection
    Chen, Yanju
    Qian, Cheng
    Liu, Chengzhi
    Shen, Hong
    Wang, Zhijian
    Ping, Jianfeng
    Wu, Jian
    Chen, Huan
    [J]. BIOSENSORS & BIOELECTRONICS, 2020, 153
  • [30] Recombinase Polymerase Amplification for Diagnostic Applications
    Daher, Rana K.
    Stewart, Gale
    Boissinot, Maurice
    Bergeron, Michel G.
    [J]. CLINICAL CHEMISTRY, 2016, 62 (07) : 947 - 958