In recent years there is a growing importance in using machine learning techniques to improve procedures in precision agriculture: in this work we perform a study on models capable of predicting oenological parameters from hyperspectral images of wine grape berries, a specially relevant topic to boost production tasks for winemakers. Specifically, we explore the capabilities of a novel technique mostly used for visualization, t-Distributed Stochastic Neighbor Embedding (t-SNE), for reducing the dimensionality of the highly complex hyperspectral data and compare its performance with Principal Component Analysis (PCA) method, which de-spite the introduction of many nonlinear dimensionality reduction techniques over the years, had achieved the best results for real-world data across several studies in literature. Additionally we explore the potential of Kernel t-SNE, an extension to the t-SNE method that allows for the usage of the technique in streaming data or online scenarios. Our results show that, in a direct comparison, t-SNE achieves better metrics than PCA for most of the data sets in this work and that the regressor (Support Vector Regression, SVR) performs better with the t-SNE reduced features as inputs, accomplishing better predictions with lower error rates. Comparing the results with current literature, our shallow learning model paired with t-SNE achieves either better or on par results than those reported, even competing with more advanced models that use deep learning techniques, which should propel the introduction of t-SNE in more studies that require dimensionality reduction. & COPY; 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).