Some new results for B1-matrices

被引:0
作者
Li, Yan [1 ]
Wang, Yaqiang [1 ]
机构
[1] Baoji Univ Arts & Sci, Sch Math & Informat Sci, Baoji 721013, Shaanxi, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2023年 / 31卷 / 08期
关键词
B; 1-matrices; S DD 1-matrices; P; -matrices; infinity norm; linear complementarity problem; LINEAR COMPLEMENTARITY-PROBLEMS; ERROR-BOUNDS; MATRICES;
D O I
10.3934/era.2023244
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The class of B1-matrices is a subclass of P-matrices and introduced as a generalization of B-matrices. In this paper, we present several properties for B1-matrices. Then, the infinity norm upper bound for the inverse of B1-matrices is obtained. Furthermore, the error bound for the linear complementarity problem of B1-matrices is presented. Finally, some numerical examples are given to illustrate our results.
引用
收藏
页码:4773 / 4787
页数:15
相关论文
共 16 条
  • [1] On the convergence of the multisplitting methods for the linear complementarity problem
    Bai, ZZ
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 21 (01) : 67 - 78
  • [2] Classes of general H-matrices
    Bru, R.
    Corral, C.
    Gimenez, I.
    Mas, J.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (10) : 2358 - 2366
  • [3] Infinity norm upper bounds for the inverse of S DD1 matrices
    Chen, Xiaoyong
    Li, Yating
    Liu, Liang
    Wang, Yaqiang
    [J]. AIMS MATHEMATICS, 2022, 7 (05): : 8847 - 8860
  • [4] Computation of error bounds for P-matrix linear complementarity problems
    Chen, XJ
    Xiang, SH
    [J]. MATHEMATICAL PROGRAMMING, 2006, 106 (03) : 513 - 525
  • [5] New error bounds for the linear complementarity problem with an SB-matrix
    Dai, Ping-Fan
    Lu, Chang-Jing
    Li, Yao-Tang
    [J]. NUMERICAL ALGORITHMS, 2013, 64 (04) : 741 - 757
  • [6] Error bounds for linear complementarity problems of DB-matrices
    Dai, Ping-Fan
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (03) : 830 - 840
  • [7] LINEAR COMPLEMENTARITY PROBLEM
    EAVES, BC
    [J]. MANAGEMENT SCIENCE SERIES A-THEORY, 1971, 17 (09): : 612 - 634
  • [8] Gao L, 2018, J INEQUAL APPL, DOI 10.1186/s13660-018-1618-x
  • [9] B-Nekrasov matrices and error bounds for linear complementarity problems
    Garcia-Esnaola, M.
    Pena, J. M.
    [J]. NUMERICAL ALGORITHMS, 2016, 72 (02) : 435 - 445
  • [10] Schur Complement-Based Infinity Norm Bounds for the Inverse of SDD Matrices
    Li, Chaoqian
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (05) : 3829 - 3845