General higher-order rogue waves in the space-shifted PT-symmetric nonlocal nonlinear Schrodinger equation

被引:1
|
作者
Rao, Ji-Guang [1 ,2 ]
Chen, Sheng-An [1 ]
Wu, Zhao-Jun [1 ]
He, Jin-Song [2 ]
机构
[1] Hubei Univ Sci & Technol, Sch Math & Stat, Xianning 437000, Peoples R China
[2] Shenzhen Univ, Inst Adv Study, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
rogue waves; PT-symmetric nonlocal nonlinear Schrodinger equation; Kadomtsev-Petviashvili hierarchy reduction method; SOLITON-SOLUTIONS;
D O I
10.7498/aps.72.20222298
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
General higher-order rogue wave solutions to the space-shifted P T-symmetric nonlocal nonlinear Schrodinger equation are constructed by employing the Kadomtsev-Petviashvili hierarchy reduction method. The analytical expressions for rogue wave solutions of any Nth-order are given through Schur polynomials. We first analyze the dynamics of the first-order rogue waves, and find that the maximum amplitude of the rogue waves can reach any height larger than three times of the constant background amplitude. The effects of the space-shifted factor x0 of the P T-symmetric nonlocal nonlinear Schrodinger equation in the first-order rogue wave solutions are studied, which only changes the center positions of the rogue waves. The dynamical behaviours and patterns of the second-order rogue waves are also analytically investigated. Then the relationships between Nth-order rogue wave patterns and the parameters in the analytical expressions of the rogue wave solutions are given, and the several different patterns of the higher-order rogue waves are further shown.
引用
收藏
页数:10
相关论文
共 66 条
  • [1] Ablowitz M. J., 1981, SOLITONS INVERSE SCA
  • [2] Integrable space-time shifted nonlocal nonlinear equations
    Ablowitz, Mark J.
    Musslimani, Ziad H.
    [J]. PHYSICS LETTERS A, 2021, 409
  • [3] Integrable Nonlocal Nonlinear Equations
    Ablowitz, Mark J.
    Musslimani, Ziad H.
    [J]. STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) : 7 - 59
  • [4] Integrable Nonlocal Nonlinear Schrodinger Equation
    Ablowitz, Mark J.
    Musslimani, Ziad H.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (06)
  • [5] Rogue waves and rational solutions of the nonlinear Schroumldinger equation
    Akhmediev, Nail
    Ankiewicz, Adrian
    Soto-Crespo, J. M.
    [J]. PHYSICAL REVIEW E, 2009, 80 (02):
  • [6] Vector Rogue Waves and Baseband Modulation Instability in the Defocusing Regime
    Baronio, Fabio
    Conforti, Matteo
    Degasperis, Antonio
    Lombardo, Sara
    Onorato, Miguel
    Wabnitz, Stefan
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (03)
  • [7] Real spectra in non-Hermitian Hamiltonians having PT symmetry
    Bender, CM
    Boettcher, S
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (24) : 5243 - 5246
  • [8] PT-symmetric quantum mechanics
    Bender, CM
    Boettcher, S
    Meisinger, PN
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) : 2201 - 2229
  • [9] EXTREME SUPERPOSITION: ROGUE WAVES OF INFINITE ORDER AND THE PAINLEVE-III HIERARCHY
    Bilman, Deniz
    Ling, Liming
    Miller, Peter D.
    [J]. DUKE MATHEMATICAL JOURNAL, 2020, 169 (04) : 671 - 760
  • [10] A Robust Inverse Scattering Transform for the Focusing Nonlinear Schrodinger Equation
    Bilman, Deniz
    Miller, Peter D.
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (08) : 1722 - 1805