Prediction of Cancer Treatment Using Advancements in Machine Learning

被引:7
作者
Singh, Arun Kumar [1 ]
Ling, Jingjing [2 ]
Malviya, Rishabha [1 ]
机构
[1] Galgotias Univ Greater Noida, Sch Med & Allied Sci, Dept Pharm, Greater Noida, Uttar Pradesh, India
[2] Nanjing Med Univ, Dept Good Clin Practice, Affiliated Wuxi Childrens Hosp, 299 Qingyang Rd, Wuxi 214023, Peoples R China
关键词
Cancer; therapy; patient care; machine learning; artificial intelligence; resistance; DRUG RESPONSE; ARTIFICIAL-INTELLIGENCE; SYSTEMATIC IDENTIFICATION; COMBINATION THERAPIES; FEATURE-SELECTION; BREAST-CANCER; MULTI-OMICS; SENSITIVITY; SYNERGY; MODEL;
D O I
10.2174/1574892818666221018091415
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Many cancer patients die due to their treatment failing because of their disease's re- sistance to chemotherapy and other forms of radiation therapy. Resistance may develop at any stage of therapy, even at the beginning. Several factors influence current therapy, including the type of cancer and the existence of genetic abnormalities. The response to treatment is not always predicted by the existence of a genetic mutation and might vary for various cancer subtypes. It is clear that cancer patients must be assigned a particular treatment or combination of drugs based on prediction models. Preliminary studies utilizing artificial intelligence-based prediction models have shown promising results. Building therapeutically useful models is still difficult despite enormous increases in computer capacity due to the lack of adequate clinically important pharmacogenomics data. Machine learning is the most widely used branch of artificial intelligence. Here, we review the current state in the area of using machine learning to predict treatment response. In addition, examples of machine learning algorithms being employed in clinical practice are offered.
引用
收藏
页码:364 / 378
页数:15
相关论文
共 165 条
[1]   Machine learning approaches to drug response prediction: challenges and recent progress [J].
Adam, George ;
Rampasek, Ladislav ;
Safikhani, Zhaleh ;
Smirnov, Petr ;
Haibe-Kains, Benjamin ;
Goldenberg, Anna .
NPJ PRECISION ONCOLOGY, 2020, 4 (01)
[2]   Precision Medicine Informatics: Principles, Prospects, and Challenges [J].
Afzal, Muhammad ;
Islam, S. M. Riazul ;
Hussain, Maqbool ;
Lee, Sungyoung .
IEEE ACCESS, 2020, 8 :13593-13612
[3]   Machine learning and feature selection for drug response prediction in precision oncology applications [J].
Ali M. ;
Aittokallio T. .
Biophysical Reviews, 2019, 11 (1) :31-39
[4]   Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach [J].
Ali, Mehreen ;
Khan, Suleiman A. ;
Wennerberg, Krister ;
Aittokallio, Tero .
BIOINFORMATICS, 2018, 34 (08) :1353-1362
[5]   Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data [J].
Aliper, Alexander ;
Plis, Sergey ;
Artemov, Artem ;
Ulloa, Alvaro ;
Mamoshina, Polina ;
Zhavoronkov, Alex .
MOLECULAR PHARMACEUTICS, 2016, 13 (07) :2524-2530
[6]   Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression [J].
Ammad-ud-din, Muhammad ;
Khan, Suleiman A. ;
Wennerberg, Krister ;
Aittokallio, Tero .
BIOINFORMATICS, 2017, 33 (14) :I359-I368
[7]   Integrative and Personalized QSAR Analysis in Cancer by Kernelized Bayesian Matrix Factorization [J].
Amnnad-ud-din, Muhammad ;
Georgii, Elisabeth ;
Gonen, Mehmet ;
Laitinen, Tuomo ;
Kallioniemi, Olli ;
Wennerberg, Krister ;
Poso, Antti ;
Kaski, Samuel .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2014, 54 (08) :2347-2359
[8]   Artificial intelligence for precision oncology: beyond patient stratification [J].
Azuaje, Francisco .
NPJ PRECISION ONCOLOGY, 2019, 3 (1)
[9]   A community computational challenge to predict the activity of pairs of compounds [J].
Bansal, Mukesh ;
Yang, Jichen ;
Karan, Charles ;
Menden, Michael P. ;
Costello, James C. ;
Tang, Hao ;
Xiao, Guanghua ;
Li, Yajuan ;
Allen, Jeffrey ;
Zhong, Rui ;
Chen, Beibei ;
Kim, Minsoo ;
Wang, Tao ;
Heiser, Laura M. ;
Realubit, Ronald ;
Mattioli, Michela ;
Alvarez, Mariano J. ;
Shen, Yao ;
Gallahan, Daniel ;
Singer, Dinah ;
Saez-Rodriguez, Julio ;
Xie, Yang ;
Stolovitzky, Gustavo ;
Califano, Andrea ;
Abbuehl, Jean-Paul ;
Altman, Russ B. ;
Balcome, Shawn ;
Bell, Ana ;
Bender, Andreas ;
Berger, Bonnie ;
Bernard, Jonathan ;
Bieberich, Andrew A. ;
Borboudakis, Giorgos ;
Chan, Christina ;
Chen, Ting-Huei ;
Choi, Jaejoon ;
Coelho, Luis Pedro ;
Creighton, Chad J. ;
Dampier, Will ;
Davisson, V. Jo ;
Deshpande, Raamesh ;
Diao, Lixia ;
Di Camillo, Barbara ;
Dundar, Murat ;
Ertel, Adam ;
Goswami, Chirayu P. ;
Gottlieb, Assaf ;
Gould, Michael N. ;
Goya, Jonathan ;
Grau, Michael .
NATURE BIOTECHNOLOGY, 2014, 32 (12) :1213-+
[10]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607